論文の概要: Feature-based Learning for Diverse and Privacy-Preserving Counterfactual
Explanations
- arxiv url: http://arxiv.org/abs/2209.13446v5
- Date: Thu, 1 Jun 2023 03:08:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-03 01:32:08.522913
- Title: Feature-based Learning for Diverse and Privacy-Preserving Counterfactual
Explanations
- Title(参考訳): 多様性とプライバシ保護のための特徴ベース学習
- Authors: Vy Vo, Trung Le, Van Nguyen, He Zhao, Edwin Bonilla, Gholamreza
Haffari, Dinh Phung
- Abstract要約: 解釈可能な機械学習は複雑なブラックボックスシステムの推論過程を理解しようとする。
優れたアプローチの1つは、ユーザが結果を変更するために何ができるかを示唆する、反ファクト的な説明を通じてである。
- 参考スコア(独自算出の注目度): 46.89706747651661
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interpretable machine learning seeks to understand the reasoning process of
complex black-box systems that are long notorious for lack of explainability.
One flourishing approach is through counterfactual explanations, which provide
suggestions on what a user can do to alter an outcome. Not only must a
counterfactual example counter the original prediction from the black-box
classifier but it should also satisfy various constraints for practical
applications. Diversity is one of the critical constraints that however remains
less discussed. While diverse counterfactuals are ideal, it is computationally
challenging to simultaneously address some other constraints. Furthermore,
there is a growing privacy concern over the released counterfactual data. To
this end, we propose a feature-based learning framework that effectively
handles the counterfactual constraints and contributes itself to the limited
pool of private explanation models. We demonstrate the flexibility and
effectiveness of our method in generating diverse counterfactuals of
actionability and plausibility. Our counterfactual engine is more efficient
than counterparts of the same capacity while yielding the lowest
re-identification risks.
- Abstract(参考訳): 解釈可能な機械学習は、説明可能性の欠如で長年悪名高い複雑なブラックボックスシステムの推論プロセスを理解しようとする。
優れたアプローチの1つは、ユーザーが結果を変更するために何ができるかを示唆する反事実的な説明を通じてである。
偽の例がブラックボックス分類器の当初の予測に逆らわなければならないだけでなく、実用上の様々な制約を満たすべきである。
多様性は、議論の少ない重要な制約の1つです。
多様な反事実は理想的であるが、他の制約に同時に対処することは計算的に困難である。
さらに、リリースされた偽データに対するプライバシーの懸念が高まっている。
そこで本研究では,非現実的制約を効果的に処理し,プライベートな説明モデルのプールに寄与する機能ベースの学習フレームワークを提案する。
本手法の柔軟性と有効性を実証し,その有効性を検証した。
我々のカウンターファクトエンジンは同じキャパシティのエンジンよりも効率的であり、低い再識別リスクをもたらす。
関連論文リスト
- Promoting Counterfactual Robustness through Diversity [10.223545393731115]
対物的説明者は、入力の小さな変更が説明に大きな変更をもたらすという意味で、堅牢性に欠ける可能性がある。
本稿では,多様性基準を用いた近似アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-12-11T17:49:25Z) - Flexible and Robust Counterfactual Explanations with Minimal Satisfiable
Perturbations [56.941276017696076]
我々は、最小満足度摂動(CEMSP)を用いた対実的説明法という概念的に単純だが効果的な解を提案する。
CEMSPは、意味論的に意味のある正常範囲の助けを借りて、異常な特徴の値を変更することを制限している。
既存の手法と比較して、我々は合成データセットと実世界のデータセットの両方で包括的な実験を行い、柔軟性を維持しつつ、より堅牢な説明を提供することを示した。
論文 参考訳(メタデータ) (2023-09-09T04:05:56Z) - Endogenous Macrodynamics in Algorithmic Recourse [52.87956177581998]
対実説明(CE)とアルゴリズム・リコース(AR)に関する既存の研究は、静的環境における個人に主に焦点を当ててきた。
既存の方法論の多くは、一般化されたフレームワークによってまとめて記述できることを示す。
次に、既存のフレームワークは、グループレベルでの言論の内在的ダイナミクスを研究する際にのみ明らかとなるような、隠された対外的関係のコストを考慮に入れていないと論じる。
論文 参考訳(メタデータ) (2023-08-16T07:36:58Z) - Resilient Constrained Learning [94.27081585149836]
本稿では,学習課題を同時に解決しながら,要求に適応する制約付き学習手法を提案する。
我々はこの手法を、その操作を変更することで破壊に適応する生態システムを記述する用語に因んで、レジリエントな制約付き学習と呼ぶ。
論文 参考訳(メタデータ) (2023-06-04T18:14:18Z) - Generating robust counterfactual explanations [60.32214822437734]
カウンターファクトの質は、現実主義、行動可能性、妥当性、堅牢性など、いくつかの基準に依存する。
本稿では, 対実的入力変化に対するロバスト性に着目し, 対実的入力変化に対するロバスト性に着目した。
我々は,このトレードオフを効果的に管理し,ユーザに対して最小限の堅牢性を保証するとともに,ロバストなデファクトを生成する新しいフレームワークであるCROCOを提案する。
論文 参考訳(メタデータ) (2023-04-24T09:00:31Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Finding Counterfactual Explanations through Constraint Relaxations [6.961253535504979]
インタラクティブな制約システムは、しばしばユーザーの制約が矛盾するため、実現不可能(解決策がない)に悩まされる。
不実現性を取り戻すための一般的なアプローチは、システム内の衝突を引き起こす制約を取り除くことである。
本稿では,過度に制約された制約満足度問題における競合検出と最大緩和に基づく反復的手法を提案する。
論文 参考訳(メタデータ) (2022-04-07T13:18:54Z) - Efficient computation of contrastive explanations [8.132423340684568]
対照的な説明と反実的な説明の関係について検討する。
本稿では,多くの標準機械学習モデルの正値(有理)を効率的に計算する2相アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-06T11:50:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。