Dense-TNT: Efficient Vehicle Type Classification Neural Network Using
Satellite Imagery
- URL: http://arxiv.org/abs/2209.13500v1
- Date: Tue, 27 Sep 2022 16:17:53 GMT
- Title: Dense-TNT: Efficient Vehicle Type Classification Neural Network Using
Satellite Imagery
- Authors: Ruikang Luo, Yaofeng Song, Han Zhao, Yicheng Zhang, Yi Zhang, Nanbin
Zhao, Liping Huang and Rong Su
- Abstract summary: This study proposes a novel Densely Connected Convolutional Network (DenseNet) framework for the vehicle type classification.
Three-region vehicle data and four different weather conditions are deployed for recognition capability evaluation.
Experimental findings validate the recognition ability of our proposed vehicle classification model with little decay, even under the heavy foggy weather condition.
- Score: 16.025849552108983
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate vehicle type classification serves a significant role in the
intelligent transportation system. It is critical for ruler to understand the
road conditions and usually contributive for the traffic light control system
to response correspondingly to alleviate traffic congestion. New technologies
and comprehensive data sources, such as aerial photos and remote sensing data,
provide richer and high-dimensional information. Also, due to the rapid
development of deep neural network technology, image based vehicle
classification methods can better extract underlying objective features when
processing data. Recently, several deep learning models have been proposed to
solve the problem. However, traditional pure convolutional based approaches
have constraints on global information extraction, and the complex environment,
such as bad weather, seriously limits the recognition capability. To improve
the vehicle type classification capability under complex environment, this
study proposes a novel Densely Connected Convolutional Transformer in
Transformer Neural Network (Dense-TNT) framework for the vehicle type
classification by stacking Densely Connected Convolutional Network (DenseNet)
and Transformer in Transformer (TNT) layers. Three-region vehicle data and four
different weather conditions are deployed for recognition capability
evaluation. Experimental findings validate the recognition ability of our
proposed vehicle classification model with little decay, even under the heavy
foggy weather condition.
Related papers
- Overtake Detection in Trucks Using CAN Bus Signals: A Comparative Study of Machine Learning Methods [51.28632782308621]
We focus on overtake detection using Controller Area Network (CAN) bus data collected from five in-service trucks provided by the Volvo Group.<n>We evaluate three common classifiers for vehicle manoeuvre detection, Artificial Neural Networks (ANN), Random Forest (RF), and Support Vector Machines (SVM)<n>Our pertruck analysis also reveals that classification accuracy, especially for overtakes, depends on the amount of training data per vehicle.
arXiv Detail & Related papers (2025-07-01T09:20:41Z) - A Dynamic Transformer Network for Vehicle Detection [57.4144097001218]
We present a dynamic Transformer network for vehicle detection (DTNet)<n>DTNet utilizes a dynamic convolution to guide a deep network to dynamically generate weights to enhance adaptability of an obtained detector.<n>To overcome the drawback of difference in an image account, a translation-variant convolution relies on spatial location information to refine obtained structural information for vehicle detection.
arXiv Detail & Related papers (2025-06-03T11:29:35Z) - Optical Flow Matters: an Empirical Comparative Study on Fusing Monocular Extracted Modalities for Better Steering [37.46760714516923]
This research introduces a new end-to-end method that exploits multimodal information from a single monocular camera to improve the steering predictions for self-driving cars.
By focusing on the fusion of RGB imagery with depth completion information or optical flow data, we propose a framework that integrates these modalities through both early and hybrid fusion techniques.
arXiv Detail & Related papers (2024-09-18T09:36:24Z) - Revolutionizing Traffic Sign Recognition: Unveiling the Potential of Vision Transformers [0.0]
Traffic Sign Recognition (TSR) holds a vital role in advancing driver assistance systems and autonomous vehicles.
This study explores three variants of Vision Transformers (PVT, TNT, LNL) and six convolutional neural networks (AlexNet, ResNet, VGG16, MobileNet, EfficientNet, GoogleNet) as baseline models.
To address the shortcomings of traditional methods, a novel pyramid EATFormer backbone is proposed, amalgamating Evolutionary Algorithms (EAs) with the Transformer architecture.
arXiv Detail & Related papers (2024-04-29T19:18:52Z) - UnLoc: A Universal Localization Method for Autonomous Vehicles using
LiDAR, Radar and/or Camera Input [51.150605800173366]
UnLoc is a novel unified neural modeling approach for localization with multi-sensor input in all weather conditions.
Our method is extensively evaluated on Oxford Radar RobotCar, ApolloSouthBay and Perth-WA datasets.
arXiv Detail & Related papers (2023-07-03T04:10:55Z) - Anomaly Detection in Automatic Generation Control Systems Based on
Traffic Pattern Analysis and Deep Transfer Learning [0.38073142980733]
In modern highly interconnected power grids, automatic generation control (AGC) is crucial in maintaining the stability of the power grid.
The dependence of the AGC system on the information and communications technology (ICT) system makes it vulnerable to various types of cyber-attacks.
Information flow (IF) analysis and anomaly detection became paramount for preventing cyber attackers from driving the cyber-physical power system to instability.
arXiv Detail & Related papers (2022-09-16T17:52:42Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
We introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training.
Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
arXiv Detail & Related papers (2022-05-28T03:11:48Z) - Task-Oriented Image Transmission for Scene Classification in Unmanned
Aerial Systems [46.64800170644672]
We propose a new aerial image transmission paradigm for the scene classification task.
A lightweight model is developed on the front-end UAV for semantic blocks transmission with perception of images and channel conditions.
In order to achieve the tradeoff between transmission latency and classification accuracy, deep reinforcement learning is used.
arXiv Detail & Related papers (2021-12-21T02:44:49Z) - Attention-based Neural Network for Driving Environment Complexity
Perception [123.93460670568554]
This paper proposes a novel attention-based neural network model to predict the complexity level of the surrounding driving environment.
It consists of a Yolo-v3 object detection algorithm, a heat map generation algorithm, CNN-based feature extractors, and attention-based feature extractors.
The proposed attention-based network achieves 91.22% average classification accuracy to classify the surrounding environment complexity.
arXiv Detail & Related papers (2021-06-21T17:27:11Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
We present a BEV domain adaptation method based on CycleGAN that uses prior semantic classification in order to preserve the information of small objects of interest during the domain adaptation process.
The quality of the generated BEVs has been evaluated using a state-of-the-art 3D object detection framework at KITTI 3D Object Detection Benchmark.
arXiv Detail & Related papers (2021-04-22T12:47:37Z) - Traffic Data Imputation using Deep Convolutional Neural Networks [2.7647400328727256]
We show that a well trained neural network can learn traffic speed dynamics from time-space diagrams.
Our results show that with vehicle penetration probe levels as low as 5%, the proposed estimation method can provide a sound reconstruction of macroscopic traffic speeds.
arXiv Detail & Related papers (2020-01-21T12:52:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.