Overtake Detection in Trucks Using CAN Bus Signals: A Comparative Study of Machine Learning Methods
- URL: http://arxiv.org/abs/2507.00593v1
- Date: Tue, 01 Jul 2025 09:20:41 GMT
- Title: Overtake Detection in Trucks Using CAN Bus Signals: A Comparative Study of Machine Learning Methods
- Authors: Fernando Alonso-Fernandez, Talha Hanif Butt, Prayag Tiwari,
- Abstract summary: We focus on overtake detection using Controller Area Network (CAN) bus data collected from five in-service trucks provided by the Volvo Group.<n>We evaluate three common classifiers for vehicle manoeuvre detection, Artificial Neural Networks (ANN), Random Forest (RF), and Support Vector Machines (SVM)<n>Our pertruck analysis also reveals that classification accuracy, especially for overtakes, depends on the amount of training data per vehicle.
- Score: 51.28632782308621
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Safe overtaking manoeuvres in trucks are vital for preventing accidents and ensuring efficient traffic flow. Accurate prediction of such manoeuvres is essential for Advanced Driver Assistance Systems (ADAS) to make timely and informed decisions. In this study, we focus on overtake detection using Controller Area Network (CAN) bus data collected from five in-service trucks provided by the Volvo Group. We evaluate three common classifiers for vehicle manoeuvre detection, Artificial Neural Networks (ANN), Random Forest (RF), and Support Vector Machines (SVM), and analyse how different preprocessing configurations affect performance. We find that variability in traffic conditions strongly influences the signal patterns, particularly in the no-overtake class, affecting classification performance if training data lacks adequate diversity. Since the data were collected under unconstrained, real-world conditions, class diversity cannot be guaranteed a priori. However, training with data from multiple vehicles improves generalisation and reduces condition-specific bias. Our pertruck analysis also reveals that classification accuracy, especially for overtakes, depends on the amount of training data per vehicle. To address this, we apply a score-level fusion strategy, which yields the best per-truck performance across most cases. Overall, we achieve an accuracy via fusion of TNR=93% (True Negative Rate) and TPR=86.5% (True Positive Rate). This research has been part of the BIG FUN project, which explores how Artificial Intelligence can be applied to logged vehicle data to understand and predict driver behaviour, particularly in relation to Camera Monitor Systems (CMS), being introduced as digital replacements for traditional exterior mirrors.
Related papers
- A Multi-Loss Strategy for Vehicle Trajectory Prediction: Combining Off-Road, Diversity, and Directional Consistency Losses [68.68514648185828]
Trajectory prediction is essential for the safety and efficiency of planning in autonomous vehicles.<n>Current models often fail to fully capture complex traffic rules and the complete range of potential vehicle movements.<n>This study introduces three novel loss functions: Offroad Loss, Direction Consistency Error, and Diversity Loss.
arXiv Detail & Related papers (2024-11-29T14:47:08Z) - Cross-Camera Distracted Driver Classification through Feature Disentanglement and Contrastive Learning [13.613407983544427]
Driver Behavior Monitoring Network (DBMNet) relies on a lightweight backbone and integrates a disentanglement module to discard camera view information.<n>DBMNet achieves an improvement of 7% in Top-1 accuracy compared to existing approaches.
arXiv Detail & Related papers (2024-11-20T10:27:12Z) - Knowledge Distillation Neural Network for Predicting Car-following Behaviour of Human-driven and Autonomous Vehicles [2.099922236065961]
This study investigates the car-following behaviours of three vehicle pairs: HDV-AV, AV-HDV and HDV-HDV in mixed traffic.
We introduce a data-driven Knowledge Distillation Neural Network (KDNN) model for predicting car-following behaviour in terms of speed.
arXiv Detail & Related papers (2024-11-08T14:57:59Z) - Federated Learning for Drowsiness Detection in Connected Vehicles [0.19116784879310028]
Driver monitoring systems can assist in determining the driver's state.
Driver drowsiness detection presents a potential solution.
transmitting the data to a central machine for model training is impractical due to the large data size and privacy concerns.
We propose a federated learning framework for drowsiness detection within a vehicular network, leveraging the YawDD dataset.
arXiv Detail & Related papers (2024-05-06T09:39:13Z) - Predicting Overtakes in Trucks Using CAN Data [51.28632782308621]
We investigate the detection of truck overtakes from CAN data.
Our analysis covers up to 10 seconds before the overtaking event.
We observe that the prediction scores of the overtake class tend to increase as we approach the overtake trigger.
arXiv Detail & Related papers (2024-04-08T17:58:22Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Deep Reinforcement Learning Based Vehicle Selection for Asynchronous
Federated Learning Enabled Vehicular Edge Computing [16.169301221410944]
In the traditional vehicular network, computing tasks generated by the vehicles are usually uploaded to the cloud for processing.
In this paper, we propose a deep reinforcement learning (DRL) based vehicle selection scheme to improve the accuracy of the global model in AFL of vehicular network.
Simulation results demonstrate our scheme can effectively remove the bad nodes and improve the aggregation accuracy of the global model.
arXiv Detail & Related papers (2023-04-06T02:40:00Z) - Driver Profiling and Bayesian Workload Estimation Using Naturalistic
Peripheral Detection Study Data [40.43737902900321]
We tackle the problem of workload estimation from driving performance data.
Key environmental factors that induce a high mental workload are identified via video analysis.
A supervised learning framework is introduced to profile drivers based on the average workload they experience.
A Bayesian filtering approach is then proposed for sequentially estimating, in (near) real-time, the driver's instantaneous workload.
arXiv Detail & Related papers (2023-03-26T13:15:44Z) - Unsupervised Driving Event Discovery Based on Vehicle CAN-data [62.997667081978825]
This work presents a simultaneous clustering and segmentation approach for vehicle CAN-data that identifies common driving events in an unsupervised manner.
We evaluate our approach with a dataset of real Tesla Model 3 vehicle CAN-data and a two-hour driving session that we annotated with different driving events.
arXiv Detail & Related papers (2023-01-12T13:10:47Z) - Supervised Contrastive ResNet and Transfer Learning for the In-vehicle
Intrusion Detection System [0.22843885788439797]
We propose a novel deep learning model called supervised contrastive (SupCon) ResNet to handle multiple attack identification on the CAN bus.
The model improves the overall false-negative rates of four types of attack by four times on average, compared to other models.
The model achieves the highest F1 score at 0.9994 on the survival dataset by utilizing transfer learning.
arXiv Detail & Related papers (2022-07-18T05:34:55Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - Unsupervised Driving Behavior Analysis using Representation Learning and
Exploiting Group-based Training [15.355045011160804]
Driving behavior monitoring plays a crucial role in managing road safety and decreasing the risk of traffic accidents.
Current work performs a robust driving pattern analysis by capturing variations in driving patterns.
It forms consistent groups by learning compressed representation of time series.
arXiv Detail & Related papers (2022-05-12T10:27:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.