論文の概要: Towards Regression-Free Neural Networks for Diverse Compute Platforms
- arxiv url: http://arxiv.org/abs/2209.13740v1
- Date: Tue, 27 Sep 2022 23:19:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-29 16:20:20.342292
- Title: Towards Regression-Free Neural Networks for Diverse Compute Platforms
- Title(参考訳): 分散計算プラットフォームのための回帰自由ニューラルネットワークを目指して
- Authors: Rahul Duggal, Hao Zhou, Shuo Yang, Jun Fang, Yuanjun Xiong, Wei Xia
- Abstract要約: 負のフリップを小さくする高精度モデル群を設計するために,REG-NAS(Regression constrained Neural Architecture Search)を導入する。
REG-NASは2つのコンポーネントから構成される: 1) より大きなモデルでより小さなモデルの全重みを収容できる新しいアーキテクチャ制約により、重量共有を最大化する。
我々は,regnasが3つの一般的なアーキテクチャ検索空間において,負のフリップが少なく,望ましいアーキテクチャを見つけることができたことを実証した。
- 参考スコア(独自算出の注目度): 50.64489250972764
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the shift towards on-device deep learning, ensuring a consistent
behavior of an AI service across diverse compute platforms becomes tremendously
important. Our work tackles the emergent problem of reducing predictive
inconsistencies arising as negative flips: test samples that are correctly
predicted by a less accurate model, but incorrectly by a more accurate one. We
introduce REGression constrained Neural Architecture Search (REG-NAS) to design
a family of highly accurate models that engender fewer negative flips. REG-NAS
consists of two components: (1) A novel architecture constraint that enables a
larger model to contain all the weights of the smaller one thus maximizing
weight sharing. This idea stems from our observation that larger weight sharing
among networks leads to similar sample-wise predictions and results in fewer
negative flips; (2) A novel search reward that incorporates both Top-1 accuracy
and negative flips in the architecture search metric. We demonstrate that
\regnas can successfully find desirable architectures with few negative flips
in three popular architecture search spaces. Compared to the existing
state-of-the-art approach, REG-NAS enables 33-48% relative reduction of
negative flips.
- Abstract(参考訳): デバイス上でのディープラーニングへの移行により、さまざまな計算プラットフォームにわたるAIサービスの一貫性のある動作を保証することが、極めて重要になります。
我々の研究は、負のフリップによって生じる予測の不一致を減らすという、創発的な問題に取り組んでいる。
負のフリップを小さくする高精度モデル群を設計するために,REG-NAS(Regression constrained Neural Architecture Search)を導入する。
REG-NASは2つのコンポーネントから構成される: 1) より大きなモデルでより小さなモデルの全重みを収容できる新しいアーキテクチャ制約により、重量共有を最大化する。
この考え方は,ネットワーク間の重み共有が,類似のサンプル単位の予測に結びつき,負のフリップが少ないこと,(2)Top-1の精度と負のフリップの両方をアーキテクチャの検索基準に組み込んだ新たな検索報酬である。
我々は,3つの人気のアーキテクチャ検索空間において,否定的なフリップが少なく,より望ましいアーキテクチャを見つけることができることを示した。
既存の最先端アプローチと比較して、REG-NASは33-48%の相対的な負のフリップの減少を可能にする。
関連論文リスト
- Representation Similarity: A Better Guidance of DNN Layer Sharing for Edge Computing without Training [3.792729116385123]
本稿では,表現類似度Sで導かれる表現をエッジで共有することで,新しいモデルマージ方式を提案する。
Pearson correlation Coefficient |r| > 0.94 than other metrics。
論文 参考訳(メタデータ) (2024-10-15T03:35:54Z) - Improved Generalization of Weight Space Networks via Augmentations [53.87011906358727]
深度重み空間(DWS)における学習は新たな研究方向であり、2次元および3次元神経場(INRs, NeRFs)への応用
我々は、この過度な適合の理由を実証的に分析し、主要な理由は、DWSデータセットの多様性の欠如であることがわかった。
そこで本研究では,重み空間におけるデータ拡張戦略について検討し,重み空間に適応したMixUp法を提案する。
論文 参考訳(メタデータ) (2024-02-06T15:34:44Z) - AffineGlue: Joint Matching and Robust Estimation [74.04609046690913]
AffineGlue, 連立2視点特徴マッチングとロバストな推定法を提案する。
AffineGlueは、最小限のモデルを推定するために、1対多の対応から潜在的なマッチを選択する。
ガイドマッチングはモデルと一致した一致を見つけるために使用され、1対1の一致の曖昧さに悩まされる。
論文 参考訳(メタデータ) (2023-07-28T08:05:36Z) - PRE-NAS: Predictor-assisted Evolutionary Neural Architecture Search [34.06028035262884]
我々は、新しい進化型NAS戦略、Predictor-assisted E-NAS(PRE-NAS)を提案する。
Pre-NASは新しい進化的探索戦略を活用し、世代ごとに高忠実度重みの継承を統合する。
NAS-Bench-201とDARTSの探索実験により、Pre-NASは最先端のNAS法より優れていることが示された。
論文 参考訳(メタデータ) (2022-04-27T06:40:39Z) - Model Architecture Adaption for Bayesian Neural Networks [9.978961706999833]
我々はBNNを精度と不確実性の両方に最適化する新しいネットワークアーキテクチャサーチ(NAS)を示す。
我々の実験では,探索されたモデルでは,最先端(ディープアンサンブル)と比較して,不確実性と精度が比較できる。
論文 参考訳(メタデータ) (2022-02-09T10:58:50Z) - IQNAS: Interpretable Integer Quadratic Programming Neural Architecture
Search [40.77061519007659]
適合ネットワークを見つけるための一般的なアプローチは、制約付きニューラルネットワークサーチ(NAS)である。
従来はネットワークの精度に複雑な予測器を使用していた。
IQNAS (Interpretable Quadratic Programming Neural Architecture Search) を導入する。
論文 参考訳(メタデータ) (2021-10-24T09:45:00Z) - Weak NAS Predictors Are All You Need [91.11570424233709]
最近の予測器ベースのnasアプローチは、アーキテクチャとパフォーマンスのペアをサンプリングし、プロキシの精度を予測するという2つの重要なステップで問題を解決しようとする。
私たちはこのパラダイムを、アーキテクチャ空間全体をカバーする複雑な予測子から、ハイパフォーマンスなサブスペースへと徐々に進む弱い予測子へとシフトさせます。
NAS-Bench-101 および NAS-Bench-201 で最高の性能のアーキテクチャを見つけるためのサンプルを少なくし、NASNet 検索空間における最先端の ImageNet パフォーマンスを実現します。
論文 参考訳(メタデータ) (2021-02-21T01:58:43Z) - FBNetV3: Joint Architecture-Recipe Search using Predictor Pretraining [65.39532971991778]
サンプル選択とランキングの両方を導くことで、アーキテクチャとトレーニングのレシピを共同でスコアする精度予測器を提案する。
高速な進化的検索をCPU分で実行し、さまざまなリソース制約に対するアーキテクチャと準備のペアを生成します。
FBNetV3は最先端のコンパクトニューラルネットワークのファミリーを構成しており、自動と手動で設計された競合より優れている。
論文 参考訳(メタデータ) (2020-06-03T05:20:21Z) - BigNAS: Scaling Up Neural Architecture Search with Big Single-Stage
Models [59.95091850331499]
予測精度を高めるためには,重みの処理後処理が必要であるという従来の知恵に挑戦するアプローチであるBigNASを提案する。
発見されたモデルファミリーであるBigNASModelsは76.5%から80.9%の範囲でトップ1の精度を達成した。
論文 参考訳(メタデータ) (2020-03-24T23:00:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。