論文の概要: AffineGlue: Joint Matching and Robust Estimation
- arxiv url: http://arxiv.org/abs/2307.15381v1
- Date: Fri, 28 Jul 2023 08:05:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-31 13:24:07.274325
- Title: AffineGlue: Joint Matching and Robust Estimation
- Title(参考訳): AffineGlue:ジョイントマッチングとロバスト推定
- Authors: Daniel Barath, Dmytro Mishkin, Luca Cavalli, Paul-Edouard Sarlin, Petr
Hruby, Marc Pollefeys
- Abstract要約: AffineGlue, 連立2視点特徴マッチングとロバストな推定法を提案する。
AffineGlueは、最小限のモデルを推定するために、1対多の対応から潜在的なマッチを選択する。
ガイドマッチングはモデルと一致した一致を見つけるために使用され、1対1の一致の曖昧さに悩まされる。
- 参考スコア(独自算出の注目度): 74.04609046690913
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose AffineGlue, a method for joint two-view feature matching and
robust estimation that reduces the combinatorial complexity of the problem by
employing single-point minimal solvers. AffineGlue selects potential matches
from one-to-many correspondences to estimate minimal models. Guided matching is
then used to find matches consistent with the model, suffering less from the
ambiguities of one-to-one matches. Moreover, we derive a new minimal solver for
homography estimation, requiring only a single affine correspondence (AC) and a
gravity prior. Furthermore, we train a neural network to reject ACs that are
unlikely to lead to a good model. AffineGlue is superior to the SOTA on
real-world datasets, even when assuming that the gravity direction points
downwards. On PhotoTourism, the AUC@10{\deg} score is improved by 6.6 points
compared to the SOTA. On ScanNet, AffineGlue makes SuperPoint and SuperGlue
achieve similar accuracy as the detector-free LoFTR.
- Abstract(参考訳): AffineGlueは, 単一点最小解法を用いることにより, 問題の組合せ複雑性を低減する2視点特徴マッチングとロバストな推定法である。
AffineGlueは、最小限のモデルを推定するために、1対多の対応から潜在的なマッチを選択する。
ガイドマッチングはモデルと一致した一致を見つけるために使用され、1対1の一致の曖昧さに悩まされる。
さらに、ホモグラフィ推定のための新しい最小解法を導出し、単一のアフィン対応 (ac) と重力前置のみを必要とする。
さらに、良いモデルにつながる可能性が低い交流を拒否するためにニューラルネットワークを訓練する。
AffineGlueは、重力方向が下向きだと仮定しても、現実世界のデータセットのSOTAよりも優れている。
PhotoTourismでは、AUC@10{\deg}スコアはSOTAに比べて6.6ポイント改善されている。
ScanNetでは、AffineGlueはSuperPointとSuperGlueを検出器フリーのLoFTRと同様の精度で実現している。
関連論文リスト
- OCMG-Net: Neural Oriented Normal Refinement for Unstructured Point Clouds [18.234146052486054]
非構造点雲から指向性正規項を推定するための頑健な精錬法を提案する。
我々のフレームワークは、初期指向の正規性を洗練させるために、特徴空間に符号配向とデータ拡張を組み込んでいる。
従来手法に存在した騒音による方向の不整合の問題に対処するため, チャンファー正規距離と呼ばれる新しい指標を導入する。
論文 参考訳(メタデータ) (2024-09-02T09:30:02Z) - Vanishing Point Estimation in Uncalibrated Images with Prior Gravity
Direction [82.72686460985297]
我々はマンハッタンのフレームを推定する問題に取り組む。
2つの新しい2行解法が導出され、そのうちの1つは既存の解法に影響を与える特異点に悩まされない。
また、局所最適化の性能を高めるために、任意の行で実行される新しい最小でないメソッドを設計する。
論文 参考訳(メタデータ) (2023-08-21T13:03:25Z) - A2B: Anchor to Barycentric Coordinate for Robust Correspondence [25.719939636977934]
偏心座標のような幾何学的不変な座標表現は特徴間のミスマッチを著しく低減できることを示す。
本稿では,ペア画像から複数のアフィン-不変対応座標を生成する新しいアンカー-バリー中心(A2B)座標符号化手法であるDECREEを紹介する。
論文 参考訳(メタデータ) (2023-06-05T10:28:53Z) - Towards Regression-Free Neural Networks for Diverse Compute Platforms [50.64489250972764]
負のフリップを小さくする高精度モデル群を設計するために,REG-NAS(Regression constrained Neural Architecture Search)を導入する。
REG-NASは2つのコンポーネントから構成される: 1) より大きなモデルでより小さなモデルの全重みを収容できる新しいアーキテクチャ制約により、重量共有を最大化する。
我々は,regnasが3つの一般的なアーキテクチャ検索空間において,負のフリップが少なく,望ましいアーキテクチャを見つけることができたことを実証した。
論文 参考訳(メタデータ) (2022-09-27T23:19:16Z) - Learning to Register Unbalanced Point Pairs [10.369750912567714]
最近の3D登録法は,大規模あるいは部分的に重複する点対を効果的に扱うことができる。
非平衡点対に対する新しい3次元登録手法であるUPPNetを提案する。
論文 参考訳(メタデータ) (2022-07-09T08:03:59Z) - GNNRank: Learning Global Rankings from Pairwise Comparisons via Directed
Graph Neural Networks [68.61934077627085]
本稿では,グラフ埋め込みを学習可能なGNNと互換性のあるモデリングフレームワークであるGNNRankを紹介する。
既存の手法と比較して,我々の手法が競争力があり,しばしば優れた性能を発揮することを示す。
論文 参考訳(メタデータ) (2022-02-01T04:19:50Z) - Deep Probabilistic Graph Matching [72.6690550634166]
本稿では,マッチング制約を伴わずに,元のQAPに適合する深層学習ベースのグラフマッチングフレームワークを提案する。
提案手法は,一般的な3つのベンチマーク(Pascal VOC,Wilow Object,SPair-71k)で評価され,すべてのベンチマークにおいて過去の最先端よりも優れていた。
論文 参考訳(メタデータ) (2022-01-05T13:37:27Z) - Toward Minimal Misalignment at Minimal Cost in One-Stage and Anchor-Free
Object Detection [6.486325109549893]
分類と回帰の分岐は、同じ規模と同じ空間的位置から特徴に対して異なる感受性を持つ。
本稿では,高い分類信頼点が高い回帰品質を持つという仮定に基づいて,点に基づく予測手法を提案する。
我々は,この現象を最小限のコストで解決することを目指しており,頭部ネットワークの微調整と,剛体ネットワークを置き換えた新しいラベル割り当て手法を提案する。
論文 参考訳(メタデータ) (2021-12-16T14:22:13Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
局所的な特徴は、ポイント・ツー・ポイント対応ではなく、リージョン・ツー・リージョンを提供する。
本稿では,全モデル推定パイプラインにおいて,地域間マッチングを効果的に活用するためのガイドラインを提案する。
実験により、アフィンソルバはより高速な実行時にポイントベースソルバに匹敵する精度を達成できることが示された。
論文 参考訳(メタデータ) (2020-07-20T12:07:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。