Integral Formulation of Macroscopic Quantum Electrodynamics in
Dispersive Dielectric Objects
- URL: http://arxiv.org/abs/2209.13962v3
- Date: Wed, 17 May 2023 16:59:58 GMT
- Title: Integral Formulation of Macroscopic Quantum Electrodynamics in
Dispersive Dielectric Objects
- Authors: Carlo Forestiere and Giovanni Miano
- Abstract summary: We propose an integral formulation of macroscopic quantum electrodynamics in the Heisenberg picture for linear dispersive dielectric objects of finite size.
We obtain an integral equation that governs the evolution of the polarization density field operator.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an integral formulation of macroscopic quantum electrodynamics in
the Heisenberg picture for linear dispersive dielectric objects of finite size,
utilizing the Hopfield-type approach. By expressing the electromagnetic field
operators as a function of the polarization density field operator via the
retarded Green function for the vacuum, we obtain an integral equation that
governs the evolution of the polarization density field operator. This
formulation offers significant advantages, as it allows for the direct
application of well-established computational techniques from classical
electrodynamics to perform quantum electrodynamics computations in open,
dispersive, and absorbing environments.
Related papers
- Vacuum polarization in molecules II: higher order corrections [0.1560553867698778]
A strategy for the efficient calculation of vacuum polarization potentials is outlined.
The order $alpha(Z alpha)$, $alpha (Z alpha)3$ and $alpha2(Zalpha)$ effects of a Gaussian nuclear charge on the electron-positron field are applied variationally.
arXiv Detail & Related papers (2024-05-18T11:23:24Z) - Quantum electrodynamics of lossy magnetodielectric samples in vacuum: modified Langevin noise formalism [55.2480439325792]
We analytically derive the modified Langevin noise formalism from the established canonical quantization of the electromagnetic field in macroscopic media.
We prove that each of the two field parts can be expressed in term of particular bosonic operators, which in turn diagonalize the electromagnetic Hamiltonian.
arXiv Detail & Related papers (2024-04-07T14:37:04Z) - Non-Uniform Magnetic Fields for Single-Electron Control [0.0]
A gauge-invariant formulation of the Wigner equation for general electromagnetic fields has been proposed.
We generalize this equation to include a general, non-uniform electric field and a linear, non-uniform magnetic field.
This has led to explore a new type of transport inside electronic waveguides based on snake trajectories.
arXiv Detail & Related papers (2023-11-10T19:05:54Z) - Vacuum polarization correction to atomic energy levels in the path
integral formalism [0.17404865362620806]
We apply quantum electrodynamics in a framework which treats the strong binding nuclear field to all orders.
Expressions for the vacuum polarization shift of binding energies are obtained from the poles of the spectral function up to second order.
arXiv Detail & Related papers (2023-09-24T19:56:45Z) - On the Su-Schrieffer-Heeger model of electron transport: low-temperature
optical conductivity by the Mellin transform [62.997667081978825]
We describe the low-temperature optical conductivity as a function of frequency for a quantum-mechanical system of electrons that hop along a polymer chain.
Our goal is to show vias how the interband conductivity of this system behaves as the smallest energy bandgap tends to close.
arXiv Detail & Related papers (2022-09-26T23:17:39Z) - Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling electronic excitation to a structured environment.
A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise.
arXiv Detail & Related papers (2022-07-06T15:30:38Z) - Operative Approach to Quantum Electrodynamics in Dispersive Dielectric
Objects Based on a Polarization Modal Expansion [0.0]
We apply a Hopfield type scheme to account for the dispersion and dissipation of the matter.
We keep the polarization and the electromagnetic field distinct to enable the treatment of the polarization and electromagnetic fluctuations on equal footing.
arXiv Detail & Related papers (2021-08-08T15:43:02Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Few-mode Field Quantization of Arbitrary Electromagnetic Spectral
Densities [0.0]
We develop a framework that provides a few-mode master equation description of the interaction between a single quantum emitter and an arbitrary electromagnetic environment.
We illustrate the power and validity of our approach by describing the population and electric field dynamics in the spontaneous decay of an emitter placed in a complex hybrid plasmonic-photonic structure.
arXiv Detail & Related papers (2020-08-01T21:55:19Z) - Method of spectral Green functions in driven open quantum dynamics [77.34726150561087]
A novel method based on spectral Green functions is presented for the simulation of driven open quantum dynamics.
The formalism shows remarkable analogies to the use of Green functions in quantum field theory.
The method dramatically reduces computational cost compared with simulations based on solving the full master equation.
arXiv Detail & Related papers (2020-06-04T09:41:08Z) - Paraxial wave function and Gouy phase for a relativistic electron in a
uniform magnetic field [68.8204255655161]
A connection between quantum mechanics and paraxial equations is established for a Dirac particle in external fields.
The paraxial form of the Landau eigenfunction for a relativistic electron in a uniform magnetic field is determined.
arXiv Detail & Related papers (2020-03-08T13:14:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.