Non-Uniform Magnetic Fields for Single-Electron Control
- URL: http://arxiv.org/abs/2311.06354v1
- Date: Fri, 10 Nov 2023 19:05:54 GMT
- Title: Non-Uniform Magnetic Fields for Single-Electron Control
- Authors: Mauro Ballicchia, Clemens Etl, Mihail Nedjalkov, Josef Weinbub
- Abstract summary: A gauge-invariant formulation of the Wigner equation for general electromagnetic fields has been proposed.
We generalize this equation to include a general, non-uniform electric field and a linear, non-uniform magnetic field.
This has led to explore a new type of transport inside electronic waveguides based on snake trajectories.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Controlling single-electron states becomes increasingly important due to the
wide-ranging advances in electron quantum optics. Single-electron control
enables coherent manipulation of individual electrons and the ability to
exploit the wave nature of electrons, which offers various opportunities for
quantum information processing, sensing, and metrology. A unique opportunity
offering new degrees of freedom for single-electron control is provided when
considering non-uniform magnetic fields. Considering the modeling perspective,
conventional electron quantum transport theories are commonly based on
gauge-dependent electromagnetic potentials. A direct formulation in terms of
intuitive electromagnetic fields is thus not possible. In an effort to rectify
this, a gauge-invariant formulation of the Wigner equation for general
electromagnetic fields has been proposed in [Nedjalkov et al., Phys. Rev. B.,
2019, 99, 014423]. However, the complexity of this equation requires to derive
a more convenient formulation for linear electromagnetic fields [Nedjalkov et
al., Phys. Rev. A., 2022, 106, 052213]. This formulation directly includes the
classical formulation of the Lorentz force and higher-order terms depending on
the magnetic field gradient, that are negligible for small variations of the
magnetic field. In this work, we generalize this equation in order to include a
general, non-uniform electric field and a linear, non-uniform magnetic field.
The thus obtained formulation has been applied to investigate the capabilities
of a linear, non-uniform magnetic field to control single-electron states in
terms of trajectory, interference patterns, and dispersion. This has led to
explore a new type of transport inside electronic waveguides based on snake
trajectories and also to explore the possibility to split wavepackets to
realize edge states.
Related papers
- Generalized Gouy Rotation of Electron Vortex beams in uniform magnetic fields [54.010858975226945]
We study the dynamics of EVBs in magnetic fields using exact solutions of the relativistic paraxial equation in magnetic fields.
We provide a unified description of different regimes under generalized Gouy rotation, linking the Gouy phase to EVB rotation angles.
This work offers new insights into the dynamics of EVBs in magnetic fields and suggests practical applications in beam manipulation and beam optics of vortex particles.
arXiv Detail & Related papers (2024-07-03T03:29:56Z) - Implementing a synthetic magnetic vector potential in a 2D superconducting qubit array [0.19165511108619068]
Many interesting condensed-matter phenomena emerge only in the presence of electromagnetic fields.
We emulate the dynamics of charged particles in an electromagnetic field using a superconducting quantum simulator.
We demonstrate that the Hall effect--the transverse deflection of a charged particle propagating in an electromagnetic field--exists in the presence of the synthetic electromagnetic field.
arXiv Detail & Related papers (2024-05-01T21:20:38Z) - Quantum electrodynamics of lossy magnetodielectric samples in vacuum: modified Langevin noise formalism [55.2480439325792]
We analytically derive the modified Langevin noise formalism from the established canonical quantization of the electromagnetic field in macroscopic media.
We prove that each of the two field parts can be expressed in term of particular bosonic operators, which in turn diagonalize the electromagnetic Hamiltonian.
arXiv Detail & Related papers (2024-04-07T14:37:04Z) - First-quantized eigensolver for ground and excited states of electrons
under a uniform magnetic field [0.0]
First-quantized eigensolver (FQE) is a recently proposed framework of quantum computation.
We propose a method for introducing a uniform magnetic field to an FQE calculation.
arXiv Detail & Related papers (2022-12-28T12:44:44Z) - Operative Approach to Quantum Electrodynamics in Dispersive Dielectric
Objects Based on a Polarization Modal Expansion [0.0]
We apply a Hopfield type scheme to account for the dispersion and dissipation of the matter.
We keep the polarization and the electromagnetic field distinct to enable the treatment of the polarization and electromagnetic fluctuations on equal footing.
arXiv Detail & Related papers (2021-08-08T15:43:02Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Construction of Dirac spinors for electron vortex beams in background
electromagnetic fields [0.0]
Exact solutions of the Dirac equation, a system of four partial differential equations, are rare.
Given the growing number of applications of high energy electron beams interacting with a variety of quantum systems in laser fields, novel methods for finding exact solutions to the Dirac equation are called for.
We present a method for building up solutions to the Dirac equation employing a recently introduced approach for the description of spinorial fields and their driving electromagnetic fields in terms of geometric algebras.
arXiv Detail & Related papers (2020-11-25T11:55:37Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.