Quantum Subroutine Composition
- URL: http://arxiv.org/abs/2209.14146v3
- Date: Thu, 13 Feb 2025 11:13:30 GMT
- Title: Quantum Subroutine Composition
- Authors: Stacey Jeffery,
- Abstract summary: In quantum algorithms, a subroutine may be called on a superposition of different inputs, which complicates things.
We prove this by using the technique of multidimensional quantum walks, recently introduced in arXiv:2208.13492.
The same technique that allows us to compose quantum subroutines in quantum walks can also be used to compose in any quantum algorithm.
- Score: 0.59829224684009
- License:
- Abstract: An important tool in algorithm design is the ability to build algorithms from other algorithms that run as subroutines. In the case of quantum algorithms, a subroutine may be called on a superposition of different inputs, which complicates things. For example, a classical algorithm that calls a subroutine $Q$ times, where the average probability of querying the subroutine on input $i$ is $p_i$, and the cost of the subroutine on input $i$ is $T_i$, incurs expected cost $Q\sum_i p_i E[T_i]$ from all subroutine queries. While this statement is obvious for classical algorithms, for quantum algorithms, it is much less so, since naively, if we run a quantum subroutine on a superposition of inputs, we need to wait for all branches of the superposition to terminate before we can apply the next operation. We nonetheless show an analogous quantum statement (*): If $q_i$ is the average query weight on $i$ over all queries, the cost from all quantum subroutine queries is $Q\sum_i q_i E[T_i]$. Here the query weight on $i$ for a particular query is the probability of measuring $i$ in the input register if we were to measure right before the query. We prove this result using the technique of multidimensional quantum walks, recently introduced in arXiv:2208.13492. We present a more general version of their quantum walk edge composition result, which yields variable-time quantum walks, generalizing variable-time quantum search, by, for example, replacing the update cost with $\sqrt{\sum_{u,v}\pi_u P_{u,v} E[T_{u,v}^2]}$, where $T_{u,v}$ is the cost to move from vertex $u$ to vertex $v$. The same technique that allows us to compose quantum subroutines in quantum walks can also be used to compose in any quantum algorithm, which is how we prove (*).
Related papers
- Quantum Approximate $k$-Minimum Finding [2.810947654192424]
We propose an optimal quantum $k$-minimum finding algorithm that works with approximate values for all $k geq 1$.
We present efficient quantum algorithms for identifying the $k$ smallest expectation values among multiple observables and for determining the $k$ lowest ground state energies of a Hamiltonian.
arXiv Detail & Related papers (2024-12-21T11:21:15Z) - Calculating response functions of coupled oscillators using quantum phase estimation [40.31060267062305]
We study the problem of estimating frequency response functions of systems of coupled, classical harmonic oscillators using a quantum computer.
Our proposed quantum algorithm operates in the standard $s-sparse, oracle-based query access model.
We show that a simple adaptation of our algorithm solves the random glued-trees problem in time.
arXiv Detail & Related papers (2024-05-14T15:28:37Z) - Quantum algorithms for Hopcroft's problem [45.45456673484445]
We study quantum algorithms for Hopcroft's problem which is a fundamental problem in computational geometry.
The classical complexity of this problem is well-studied, with the best known algorithm running in $O(n4/3)$ time.
Our results are two different quantum algorithms with time complexity $widetilde O(n5/6)$.
arXiv Detail & Related papers (2024-05-02T10:29:06Z) - Quantum Speedups for Bayesian Network Structure Learning [0.0]
For networks with $n$ nodes, the fastest known algorithms run in time $O(cn)$ in the worst case, with no improvement in two decades.
Inspired by recent advances in quantum computing, we ask whether BNSL admits a quantum speedup.
We give two algorithms achieving $c leq 1.817$ and $c leq 1.982$.
arXiv Detail & Related papers (2023-05-31T09:15:28Z) - On the exact quantum query complexity of $\text{MOD}_m^n$ and $\text{EXACT}_{k,l}^n$ [4.956977275061968]
We present an exact quantum algorithm for computing $textMOD_mn$.
We show exact quantum query complexity of a broad class of symmetric functions that map $0,1n$ to a finite set $X$ is less than $n$.
arXiv Detail & Related papers (2023-03-20T08:17:32Z) - Fast Quantum Algorithms for Trace Distance Estimation [8.646488471216262]
We propose efficient quantum algorithms for estimating the trace distance within additive error $varepsilon$ between mixed quantum states of rank $r$.
We show that the decision version of low-rank trace distance estimation is $mathsfBQP$-complete.
arXiv Detail & Related papers (2023-01-17T10:16:14Z) - Optimal (controlled) quantum state preparation and improved unitary
synthesis by quantum circuits with any number of ancillary qubits [20.270300647783003]
Controlled quantum state preparation (CQSP) aims to provide the transformation of $|irangle |0nrangle to |irangle |psi_irangle $ for all $iin 0,1k$ for the given $n$-qubit states.
We construct a quantum circuit for implementing CQSP, with depth $Oleft(n+k+frac2n+kn+k+mright)$ and size $Oleft(2n+kright)$
arXiv Detail & Related papers (2022-02-23T04:19:57Z) - Asymptotically Optimal Circuit Depth for Quantum State Preparation and
General Unitary Synthesis [24.555887999356646]
The problem is of fundamental importance in quantum algorithm design, Hamiltonian simulation and quantum machine learning, yet its circuit depth and size complexity remain open when ancillary qubits are available.
In this paper, we study efficient constructions of quantum circuits with $m$ ancillary qubits that can prepare $psi_vrangle$ in depth.
Our circuits are deterministic, prepare the state and carry out the unitary precisely, utilize the ancillary qubits tightly and the depths are optimal in a wide range of parameter regime.
arXiv Detail & Related papers (2021-08-13T09:47:11Z) - Quantum Algorithm for Fidelity Estimation [8.270684567157987]
For two unknown mixed quantum states $rho$ and $sigma$ in an $N$-dimensional space, computing their fidelity $F(rho,sigma)$ is a basic problem.
We propose a quantum algorithm that solves this problem in $namepoly(log (N), r, 1/varepsilon)$ time.
arXiv Detail & Related papers (2021-03-16T13:57:01Z) - No quantum speedup over gradient descent for non-smooth convex
optimization [22.16973542453584]
Black-box access to a (not necessarily smooth) function $f:mathbbRn to mathbbR$ and its (sub)gradient.
Our goal is to find an $epsilon$-approximate minimum of $f$ starting from a point that is distance at most $R$ from the true minimum.
We show that although the function family used in the lower bound is hard for randomized algorithms, it can be solved using $O(GR/epsilon)$ quantum queries.
arXiv Detail & Related papers (2020-10-05T06:32:47Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.