論文の概要: FIRE: A Failure-Adaptive Reinforcement Learning Framework for Edge Computing Migrations
- arxiv url: http://arxiv.org/abs/2209.14399v3
- Date: Sun, 22 Sep 2024 15:31:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 15:35:37.602924
- Title: FIRE: A Failure-Adaptive Reinforcement Learning Framework for Edge Computing Migrations
- Title(参考訳): FIRE:エッジコンピューティングマイグレーションのための障害適応型強化学習フレームワーク
- Authors: Marie Siew, Shikhar Sharma, Zekai Li, Kun Guo, Chao Xu, Tania Lorido-Botran, Tony Q. S. Quek, Carlee Joe-Wong,
- Abstract要約: FIREは、エッジコンピューティングのディジタルツイン環境でRLポリシーをトレーニングすることで、まれなイベントに適応するフレームワークである。
ImREは重要なサンプリングに基づくQ-ラーニングアルゴリズムであり、希少事象をその値関数への影響に比例してサンプリングする。
FIREは故障時にバニラRLやグリーディベースラインと比較してコストを削減できることを示す。
- 参考スコア(独自算出の注目度): 52.85536740465277
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In edge computing, users' service profiles are migrated due to user mobility. Reinforcement learning (RL) frameworks have been proposed to do so, often trained on simulated data. However, existing RL frameworks overlook occasional server failures, which although rare, impact latency-sensitive applications like autonomous driving and real-time obstacle detection. Nevertheless, these failures (rare events), being not adequately represented in historical training data, pose a challenge for data-driven RL algorithms. As it is impractical to adjust failure frequency in real-world applications for training, we introduce FIRE, a framework that adapts to rare events by training a RL policy in an edge computing digital twin environment. We propose ImRE, an importance sampling-based Q-learning algorithm, which samples rare events proportionally to their impact on the value function. FIRE considers delay, migration, failure, and backup placement costs across individual and shared service profiles. We prove ImRE's boundedness and convergence to optimality. Next, we introduce novel deep Q-learning (ImDQL) and actor critic (ImACRE) versions of our algorithm to enhance scalability. We extend our framework to accommodate users with varying risk tolerances. Through trace driven experiments, we show that FIRE reduces costs compared to vanilla RL and the greedy baseline in the event of failures.
- Abstract(参考訳): エッジコンピューティングでは、ユーザのモビリティのために、ユーザのサービスプロファイルが移行される。
強化学習(RL)フレームワークは、しばしばシミュレーションデータに基づいて訓練される。
しかし、既存のRLフレームワークは時折サーバの障害を見落としており、これは、自律運転やリアルタイム障害検出のような遅延に敏感なアプリケーションに影響を与えている。
それでも、過去のトレーニングデータで適切に表現されていないこれらの失敗(まれな出来事)は、データ駆動RLアルゴリズムに挑戦する。
実世界のトレーニング用アプリケーションにおいて、故障頻度を調整することは現実的ではないため、エッジコンピューティングのディジタルツイン環境でRLポリシーをトレーニングすることで、まれな事象に適応するフレームワークであるFIREを導入する。
ImREは重要なサンプリングに基づくQ-ラーニングアルゴリズムであり、希少事象をその値関数への影響に比例してサンプリングする。
FIREは、個々のサービスプロファイルと共有サービスのプロファイルにまたがる遅延、マイグレーション、障害、バックアップの配置コストを考慮に入れている。
我々はImREの有界性と最適性への収束性を証明する。
次に、拡張性を高めるために、新しいQ-ラーニング(ImDQL)とアクタ評論家(ImACRE)バージョンを導入します。
リスクトレランスの異なるユーザに対応するために、当社のフレームワークを拡張しています。
トレース駆動実験により,障害発生時のバニラRLやグリーディベースラインと比較して,FIREがコストを削減できることが判明した。
関連論文リスト
- OffRIPP: Offline RL-based Informative Path Planning [12.705099730591671]
IPPはロボット工学において重要なタスクであり、ターゲット環境に関する貴重な情報を収集するためには、エージェントが経路を設計する必要がある。
トレーニング中のリアルタイムインタラクションを必要とせずに情報ゲインを最適化するオフラインRLベースのIPPフレームワークを提案する。
我々は、広範囲なシミュレーションと実世界の実験を通して、この枠組みを検証する。
論文 参考訳(メタデータ) (2024-09-25T11:30:59Z) - A Neuromorphic Architecture for Reinforcement Learning from Real-Valued
Observations [0.34410212782758043]
強化学習(RL)は複雑な環境における意思決定のための強力なフレームワークを提供する。
本稿では,実測値を用いてRL問題を解くための新しいスパイキングニューラルネットワーク(SNN)アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-07-06T12:33:34Z) - A Generative Framework for Low-Cost Result Validation of Machine Learning-as-a-Service Inference [4.478182379059458]
FidesはML-as-a-Service(ML)推論のリアルタイム整合性検証のための新しいフレームワークである。
Fidesは、統計的分析とばらつき測定を使用して、サービスモデルが攻撃を受けている場合、高い確率で識別するクライアント側攻撃検出モデルを備えている。
攻撃検出と再分類モデルの訓練のための生成的逆ネットワークフレームワークを考案した。
論文 参考訳(メタデータ) (2023-03-31T19:17:30Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
強化学習アルゴリズムは成功するが、エージェントと環境の間の大量の相互作用を必要とする。
本稿では,教師なしモデルベースRLを用いてエージェントを事前学習する手法を提案する。
我々はReal-Word RLベンチマークにおいて、適応中の環境摂動に対する抵抗性を示唆し、堅牢な性能を示す。
論文 参考訳(メタデータ) (2022-09-24T14:22:29Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Regularized Behavior Value Estimation [31.332929202377]
正規化行動値推定(R-BVE)を導入する。
R-BVEはトレーニング中の行動方針の価値を推定し、展開時にのみ政策改善を行います。
我々は,RL Unplugged ATARIデータセットの最先端性能を含む,R-BVEの有効性の実証的な証拠を多数提供する。
論文 参考訳(メタデータ) (2021-03-17T11:34:54Z) - MUSBO: Model-based Uncertainty Regularized and Sample Efficient Batch
Optimization for Deployment Constrained Reinforcement Learning [108.79676336281211]
データ収集とオンライン学習のための新しいポリシーの継続的展開はコスト非効率か非現実的かのどちらかである。
モデルベース不確実性正規化とサンプル効率的なバッチ最適化という新しいアルゴリズム学習フレームワークを提案する。
本フレームワークは,各デプロイメントの新規で高品質なサンプルを発見し,効率的なデータ収集を実現する。
論文 参考訳(メタデータ) (2021-02-23T01:30:55Z) - Continuous Doubly Constrained Batch Reinforcement Learning [93.23842221189658]
環境とのオンラインインタラクションではなく、固定されたオフラインデータセットのみを使用して効果的なポリシーを学ぶバッチRLのアルゴリズムを提案する。
バッチRLにおける制限されたデータは、トレーニングデータに不十分に表現された状態/動作の値推定に固有の不確実性をもたらす。
この分散を減らすための政策制約と、過度に楽観的な見積もりを妨げる価値制約という2つの簡単な罰則によってこの問題を軽減することを提案する。
論文 参考訳(メタデータ) (2021-02-18T08:54:14Z) - Critic Regularized Regression [70.8487887738354]
批判正規化回帰(CRR)形式を用いてデータからポリシーを学習するための新しいオフラインRLアルゴリズムを提案する。
CRRは驚くほどよく動作し、高次元の状態と行動空間を持つタスクにスケールする。
論文 参考訳(メタデータ) (2020-06-26T17:50:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。