論文の概要: Dataset Complexity Assessment Based on Cumulative Maximum Scaled Area
Under Laplacian Spectrum
- arxiv url: http://arxiv.org/abs/2209.14743v1
- Date: Thu, 29 Sep 2022 13:02:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-30 16:02:02.387400
- Title: Dataset Complexity Assessment Based on Cumulative Maximum Scaled Area
Under Laplacian Spectrum
- Title(参考訳): ラプラシアンスペクトル下の累積最大スケール領域に基づくデータセット複雑性評価
- Authors: Guang Li, Ren Togo, Takahiro Ogawa, Miki Haseyama
- Abstract要約: DCNNモデルをトレーニングする前にデータセットの複雑さを効果的に評価することで分類性能を予測することが重要である。
本稿では,ラプラシアンスペクトル(cmsAULS)の下での累積最大スケール領域という新しい手法を提案する。
- 参考スコア(独自算出の注目度): 38.65823547986758
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dataset complexity assessment aims to predict classification performance on a
dataset with complexity calculation before training a classifier, which can
also be used for classifier selection and dataset reduction. The training
process of deep convolutional neural networks (DCNNs) is iterative and
time-consuming because of hyperparameter uncertainty and the domain shift
introduced by different datasets. Hence, it is meaningful to predict
classification performance by assessing the complexity of datasets effectively
before training DCNN models. This paper proposes a novel method called
cumulative maximum scaled Area Under Laplacian Spectrum (cmsAULS), which can
achieve state-of-the-art complexity assessment performance on six datasets.
- Abstract(参考訳): データセット複雑性アセスメント(dataset complexity assessment)は、分類器を訓練する前に複雑性計算を伴うデータセットの分類性能を予測することを目的としている。
深層畳み込みニューラルネットワーク(DCNN)のトレーニングプロセスは、ハイパーパラメータの不確実性と異なるデータセットによって導入されたドメインシフトのため、反復的かつ時間を要する。
したがって、DCNNモデルをトレーニングする前にデータセットの複雑さを効果的に評価することで分類性能を予測することが重要である。
本稿では,6つのデータセットに対して最先端の複雑性評価性能を達成できる累積最大スケール領域(cmsAULS)を提案する。
関連論文リスト
- Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
自己組織化マップ(SOM)におけるトポロジカルプロジェクションに基づく半教師付き学習手法を提案する。
提案手法は,まずラベル付きデータ上でSOMを訓練し,最小限のラベル付きデータポイントをキーベストマッチングユニット(BMU)に割り当てる。
提案した最小教師付きモデルが従来の回帰手法を大幅に上回ることを示す。
論文 参考訳(メタデータ) (2024-01-12T22:51:48Z) - Iterative self-transfer learning: A general methodology for response
time-history prediction based on small dataset [0.0]
本研究では,小さなデータセットに基づいてニューラルネットワークを学習するための反復的自己伝達学習手法を提案する。
提案手法は,小さなデータセットに対して,ほぼ一桁の精度でモデル性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-14T18:48:04Z) - Treatment-RSPN: Recurrent Sum-Product Networks for Sequential Treatment
Regimes [3.7004311481324677]
Sum-product Network (SPN) は、高い効率な確率的推論を可能にする新しいディープラーニングアーキテクチャとして登場した。
RSPNを用いた逐次的処理決定行動と処理応答のモデル化のための一般的なフレームワークを提案する。
本研究は,MIMIC-IV集中治療ユニット医療データベースから得られた,人工的データセットと実世界のデータに対するアプローチを評価する。
論文 参考訳(メタデータ) (2022-11-14T00:18:44Z) - Do We Really Need a Learnable Classifier at the End of Deep Neural
Network? [118.18554882199676]
本研究では、ニューラルネットワークを学習して分類器をランダムにETFとして分類し、訓練中に固定する可能性について検討する。
実験結果から,バランスの取れたデータセットの画像分類において,同様の性能が得られることがわかった。
論文 参考訳(メタデータ) (2022-03-17T04:34:28Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN)は、そのパラメータにCanonical/Polyadic分解を課すテンソルベースの非線形学習モデルである。
まず、入力をマルチリニアアレイとして扱い、ベクトル化の必要性を回避し、すべてのデータ次元に沿って構造情報を十分に活用することができる。
Rank-R FNNの普遍的な近似と学習性の特性を確立し、実世界のハイパースペクトルデータセットのパフォーマンスを検証する。
論文 参考訳(メタデータ) (2021-04-11T16:37:32Z) - CDEvalSumm: An Empirical Study of Cross-Dataset Evaluation for Neural
Summarization Systems [121.78477833009671]
データセット間設定下での様々な要約モデルの性能について検討する。
異なるドメインの5つのデータセットに対する11の代表的な要約システムに関する包括的な研究は、モデルアーキテクチャと生成方法の影響を明らかにしている。
論文 参考訳(メタデータ) (2020-10-11T02:19:15Z) - SECODA: Segmentation- and Combination-Based Detection of Anomalies [0.0]
SECODAは、連続的および分類的属性を含むデータセットの教師なし非パラメトリック異常検出アルゴリズムである。
このアルゴリズムはメモリのインプリントが低く、実行時のパフォーマンスはデータセットのサイズと線形にスケールする。
シミュレーションおよび実生活データセットによる評価は、このアルゴリズムが様々な種類の異常を識別できることを示している。
論文 参考訳(メタデータ) (2020-08-16T10:03:14Z) - New advances in enumerative biclustering algorithms with online
partitioning [80.22629846165306]
さらに、数値データセットの列に定数値を持つ最大二クラスタの効率的で完全で正しい非冗長列挙を実現できる二クラスタリングアルゴリズムであるRIn-Close_CVCを拡張した。
改良されたアルゴリズムはRIn-Close_CVC3と呼ばれ、RIn-Close_CVCの魅力的な特性を保ちます。
論文 参考訳(メタデータ) (2020-03-07T14:54:26Z) - Tighter Bound Estimation of Sensitivity Analysis for Incremental and
Decremental Data Modification [39.62854914952284]
大規模な分類問題では、データの一部が元のデータセットに追加または削除された場合、データセットは常に頻繁な更新に直面する。
本稿では, 線形分類器を正確に更新することなく, 線形分類器について合理的な推論を行うアルゴリズムを提案する。
理論的解析と実験の結果から,提案手法は係数境界の厳密性や計算複雑性の観点から既存手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-03-06T18:28:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。