論文の概要: Double Graphs Regularized Multi-view Subspace Clustering
- arxiv url: http://arxiv.org/abs/2209.15143v1
- Date: Fri, 30 Sep 2022 00:16:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-03 16:10:13.744505
- Title: Double Graphs Regularized Multi-view Subspace Clustering
- Title(参考訳): ダブルグラフ正規化マルチビューサブスペースクラスタリング
- Authors: Longlong Chen, Yulong Wang, Youheng Liu, Yutao Hu, Libin Wang
- Abstract要約: 本稿では,新しいDouble Graphs Regularized Multi-view Subspace Clustering (DGRMSC)法を提案する。
マルチビューデータのグローバルな構造情報とローカルな構造情報の両方を統一されたフレームワークで活用することを目的としている。
- 参考スコア(独自算出の注目度): 15.52467509308717
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent years have witnessed a growing academic interest in multi-view
subspace clustering. In this paper, we propose a novel Double Graphs
Regularized Multi-view Subspace Clustering (DGRMSC) method, which aims to
harness both global and local structural information of multi-view data in a
unified framework. Specifically, DGRMSC firstly learns a latent representation
to exploit the global complementary information of multiple views. Based on the
learned latent representation, we learn a self-representation to explore its
global cluster structure. Further, Double Graphs Regularization (DGR) is
performed on both latent representation and self-representation to take
advantage of their local manifold structures simultaneously. Then, we design an
iterative algorithm to solve the optimization problem effectively. Extensive
experimental results on real-world datasets demonstrate the effectiveness of
the proposed method.
- Abstract(参考訳): 近年、マルチビューサブスペースクラスタリングへの学術的関心が高まっている。
本稿では,多視点データの大域的および局所的構造情報を統一フレームワークで活用することを目的とした,新しい二重グラフ正規化多視点部分空間クラスタリング(dgrmsc)法を提案する。
具体的には、DGRMSCはまず、複数のビューのグローバル補完情報を利用する潜在表現を学習する。
学習した潜在表現に基づいて、そのグローバルクラスタ構造を探索するための自己表現を学ぶ。
さらに、局所多様体構造を同時に活用するために、潜在表現と自己表現の両方でダブルグラフ正規化(DGR)を行う。
そして,最適化問題を効果的に解くために反復アルゴリズムを設計する。
実世界のデータセットに関する広範な実験結果から,提案手法の有効性が示された。
関連論文リスト
- SLRL: Structured Latent Representation Learning for Multi-view Clustering [24.333292079699554]
マルチビュークラスタリング(MVC)は、異なるビュー間の固有の一貫性と相補性を活用して、クラスタリングの結果を改善することを目的としている。
MVCでの広範な研究にもかかわらず、既存のほとんどのメソッドは、主にクラスタリングの有効性を高めるためにビューをまたいだ補完的な情報を活用することに重点を置いています。
本稿では,構造化潜在表現学習に基づくマルチビュークラスタリング手法を提案する。
論文 参考訳(メタデータ) (2024-07-11T09:43:57Z) - One for all: A novel Dual-space Co-training baseline for Large-scale
Multi-View Clustering [42.92751228313385]
我々は、Dual-space Co-training Large-scale Multi-view Clustering (DSCMC)という新しいマルチビュークラスタリングモデルを提案する。
提案手法の主な目的は,2つの異なる空間における協調学習を活用することにより,クラスタリング性能を向上させることである。
我々のアルゴリズムは近似線形計算複雑性を持ち、大規模データセットへの適用が成功することを保証している。
論文 参考訳(メタデータ) (2024-01-28T16:30:13Z) - Efficient Multi-View Graph Clustering with Local and Global Structure
Preservation [59.49018175496533]
局所・グローバル構造保存を用いた効率的なマルチビューグラフクラスタリング(EMVGC-LG)という,アンカーベースのマルチビューグラフクラスタリングフレームワークを提案する。
具体的には、EMVGC-LGがクラスタリング品質を向上させるために、アンカー構築とグラフ学習を共同で最適化する。
さらに、EMVGC-LGはサンプル数に関する既存のAMVGCメソッドの線形複雑性を継承する。
論文 参考訳(メタデータ) (2023-08-31T12:12:30Z) - Cross-view Graph Contrastive Representation Learning on Partially
Aligned Multi-view Data [52.491074276133325]
マルチビュー表現学習は、過去数十年間で急速に発展し、多くの分野に応用されてきた。
本稿では,多視点情報を統合してデータアライメントを行い,潜在表現を学習する,新しいクロスビューグラフコントラスト学習フレームワークを提案する。
複数の実データを用いて実験を行い,クラスタリングおよび分類作業における提案手法の有効性を示した。
論文 参考訳(メタデータ) (2022-11-08T09:19:32Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
我々は,非負の特徴特性を活用し,多視点情報を統合された共同学習フレームワークに組み込む,新しいクラスタリングモデルを定式化する。
また、深層機能に基づいたクラスタリングデータに対するマルチモデル非負グラフベースのアプローチを初めて検討する。
論文 参考訳(メタデータ) (2022-11-03T08:18:27Z) - Joint Multi-view Unsupervised Feature Selection and Graph Learning [18.303477722460247]
本稿では,JMVFG(Command Multi-view unsupervised feature selection and graph learning)アプローチを提案する。
複数視点の特徴選択を分解で定式化し、各対象行列をビュー固有の基底行列に分解する。
様々な実世界のマルチビューデータセットの実験は、マルチビュー特徴選択とグラフ学習タスクの両方において、我々のアプローチの優位性を実証している。
論文 参考訳(メタデータ) (2022-04-18T10:50:03Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
GRCCAと呼ばれるクラスタ割り当てを対比して、教師なしグラフ表現モデルを提案する。
クラスタリングアルゴリズムとコントラスト学習を組み合わせることで、局所的およびグローバルな情報を合成的にうまく活用する動機付けがある。
GRCCAは、ほとんどのタスクにおいて強力な競争力を持っている。
論文 参考訳(メタデータ) (2021-12-15T07:28:58Z) - Multi-view Subspace Clustering Networks with Local and Global Graph
Information [19.64977233324484]
本研究の目的は、異なる分野や測定値から収集されたデータの基盤となるグループ構造を検討することである。
我々は,MSCNLGと呼ばれる局所グラフ情報とグローバルグラフ情報を備えた,新しいマルチビューサブスペースクラスタリングネットワークを提案する。
エンド・ツー・エンドのトレーニング可能なフレームワークとして、提案手法は複数のビューの貴重な情報を完全に調査する。
論文 参考訳(メタデータ) (2020-10-19T09:00:19Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
本稿では,適応グラフ正規化に基づくマルチビュークラスタリング手法を提案する。
5つの多視点ベンチマークの実験結果から,提案手法が他の最先端手法をクリアマージンで上回ることを示す。
論文 参考訳(メタデータ) (2020-08-23T08:25:06Z) - Generative Partial Multi-View Clustering [133.36721417531734]
本稿では,不完全なマルチビュー問題に対処するため,GP-MVCと呼ばれる生成的部分的マルチビュークラスタリングモデルを提案する。
まず、マルチビューエンコーダネットワークをトレーニングして、一般的な低次元表現を学習し、次にクラスタリング層を使用して複数のビューをまたいだ一貫したクラスタ構造をキャプチャする。
第2に、他のビューが与える共有表現に基づいて、1つのビュー条件の欠落データを生成するために、ビュー固有の生成敵ネットワークを開発する。
論文 参考訳(メタデータ) (2020-03-29T17:48:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。