論文の概要: Efficient Multi-View Graph Clustering with Local and Global Structure
Preservation
- arxiv url: http://arxiv.org/abs/2309.00024v1
- Date: Thu, 31 Aug 2023 12:12:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-04 15:40:27.418287
- Title: Efficient Multi-View Graph Clustering with Local and Global Structure
Preservation
- Title(参考訳): 局所的・大域的構造保存による効率的なマルチビューグラフクラスタリング
- Authors: Yi Wen, Suyuan Liu, Xinhang Wan, Siwei Wang, Ke Liang, Xinwang Liu,
Xihong Yang, Pei Zhang
- Abstract要約: 局所・グローバル構造保存を用いた効率的なマルチビューグラフクラスタリング(EMVGC-LG)という,アンカーベースのマルチビューグラフクラスタリングフレームワークを提案する。
具体的には、EMVGC-LGがクラスタリング品質を向上させるために、アンカー構築とグラフ学習を共同で最適化する。
さらに、EMVGC-LGはサンプル数に関する既存のAMVGCメソッドの線形複雑性を継承する。
- 参考スコア(独自算出の注目度): 59.49018175496533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anchor-based multi-view graph clustering (AMVGC) has received abundant
attention owing to its high efficiency and the capability to capture
complementary structural information across multiple views. Intuitively, a
high-quality anchor graph plays an essential role in the success of AMVGC.
However, the existing AMVGC methods only consider single-structure information,
i.e., local or global structure, which provides insufficient information for
the learning task. To be specific, the over-scattered global structure leads to
learned anchors failing to depict the cluster partition well. In contrast, the
local structure with an improper similarity measure results in potentially
inaccurate anchor assignment, ultimately leading to sub-optimal clustering
performance. To tackle the issue, we propose a novel anchor-based multi-view
graph clustering framework termed Efficient Multi-View Graph Clustering with
Local and Global Structure Preservation (EMVGC-LG). Specifically, a unified
framework with a theoretical guarantee is designed to capture local and global
information. Besides, EMVGC-LG jointly optimizes anchor construction and graph
learning to enhance the clustering quality. In addition, EMVGC-LG inherits the
linear complexity of existing AMVGC methods respecting the sample number, which
is time-economical and scales well with the data size. Extensive experiments
demonstrate the effectiveness and efficiency of our proposed method.
- Abstract(参考訳): アンカーベースのマルチビューグラフクラスタリング(AMVGC)は、高い効率と複数のビューにまたがる補完構造情報をキャプチャする能力により、多くの注目を集めている。
直感的には、高品質アンカーグラフは amvgc の成功に不可欠な役割を果たす。
しかし,既存のAMVGC手法では,学習課題に不十分な情報を提供する単一構造情報,すなわち局所構造やグローバル構造のみを考慮に入れている。
具体的には、オーバー散乱したグローバル構造は、クラスタパーティションをうまく表現できない学習アンカーにつながる。
対照的に、不適切な類似度尺度を持つ局所構造は、潜在的に不正確なアンカー割り当てをもたらし、最終的には準最適クラスタリング性能をもたらす。
そこで本稿では,ローカルおよびグローバル構造保存(emvgc-lg)による効率的なマルチビューグラフクラスタリングという,新しいアンカーベースのマルチビューグラフクラスタリングフレームワークを提案する。
具体的には、理論的保証を持つ統一フレームワークは、ローカルおよびグローバル情報をキャプチャするように設計されている。
さらにemvgc-lgは、アンカー構築とグラフ学習を共同で最適化し、クラスタリングの品質を高める。
さらに、EMVGC-LGはサンプル数に関する既存のAMVGCメソッドの線形複雑性を継承する。
提案手法の有効性と有効性を示す実験を行った。
関連論文リスト
- SLRL: Structured Latent Representation Learning for Multi-view Clustering [24.333292079699554]
マルチビュークラスタリング(MVC)は、異なるビュー間の固有の一貫性と相補性を活用して、クラスタリングの結果を改善することを目的としている。
MVCでの広範な研究にもかかわらず、既存のほとんどのメソッドは、主にクラスタリングの有効性を高めるためにビューをまたいだ補完的な情報を活用することに重点を置いています。
本稿では,構造化潜在表現学習に基づくマルチビュークラスタリング手法を提案する。
論文 参考訳(メタデータ) (2024-07-11T09:43:57Z) - One for all: A novel Dual-space Co-training baseline for Large-scale
Multi-View Clustering [42.92751228313385]
我々は、Dual-space Co-training Large-scale Multi-view Clustering (DSCMC)という新しいマルチビュークラスタリングモデルを提案する。
提案手法の主な目的は,2つの異なる空間における協調学習を活用することにより,クラスタリング性能を向上させることである。
我々のアルゴリズムは近似線形計算複雑性を持ち、大規模データセットへの適用が成功することを保証している。
論文 参考訳(メタデータ) (2024-01-28T16:30:13Z) - Scalable Incomplete Multi-View Clustering with Structure Alignment [71.62781659121092]
本稿では,新しいアンカーグラフ学習フレームワークを提案する。
ビュー固有のアンカーグラフを構築し、異なるビューから補完情報をキャプチャする。
提案したSIMVC-SAの時間と空間の複雑さはサンプル数と線形に相関していることが証明された。
論文 参考訳(メタデータ) (2023-08-31T08:30:26Z) - Dual Information Enhanced Multi-view Attributed Graph Clustering [11.624319530337038]
本稿では,Dual Information enhanced Multi-view Attributed Graph Clustering (DIAGC)法を提案する。
提案手法では,複数の視点からのコンセンサスと特定情報の探索を阻害する特定情報再構成(SIR)モジュールを提案する。
相互情報最大化(MIM)モジュールは、潜在高レベル表現と低レベル表現との合意を最大化し、高レベル表現が所望のクラスタリング構造を満たすことを可能にする。
論文 参考訳(メタデータ) (2022-11-28T01:18:04Z) - Double Graphs Regularized Multi-view Subspace Clustering [15.52467509308717]
本稿では,新しいDouble Graphs Regularized Multi-view Subspace Clustering (DGRMSC)法を提案する。
マルチビューデータのグローバルな構造情報とローカルな構造情報の両方を統一されたフレームワークで活用することを目的としている。
論文 参考訳(メタデータ) (2022-09-30T00:16:42Z) - Fine-grained Graph Learning for Multi-view Subspace Clustering [2.4094285826152593]
マルチビューサブスペースクラスタリング(FGL-MSC)のためのきめ細かいグラフ学習フレームワークを提案する。
主な課題は、クラスタリングタスクに適合する学習グラフを生成しながら、微細な融合重みを最適化する方法である。
8つの実世界のデータセットの実験では、提案されたフレームワークは最先端の手法に匹敵する性能を示している。
論文 参考訳(メタデータ) (2022-01-12T18:00:29Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
GRCCAと呼ばれるクラスタ割り当てを対比して、教師なしグラフ表現モデルを提案する。
クラスタリングアルゴリズムとコントラスト学習を組み合わせることで、局所的およびグローバルな情報を合成的にうまく活用する動機付けがある。
GRCCAは、ほとんどのタスクにおいて強力な競争力を持っている。
論文 参考訳(メタデータ) (2021-12-15T07:28:58Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
マルチビュークラスタリングのための効率的かつ効率的なグラフ学習モデルを提案する。
本手法はテンソルシャッテンp-ノルムの最小化により異なるビューのグラフ間のビュー類似性を利用する。
提案アルゴリズムは時間経済であり,安定した結果を得るとともに,データサイズによく対応している。
論文 参考訳(メタデータ) (2021-08-15T13:14:28Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
本稿では、HSIデータクラスタリングのための空間スペクトルクラスタリングとアンカーグラフ(SSCAG)という新しい非監視アプローチを提案する。
提案されたSSCAGは最先端のアプローチと競合する。
論文 参考訳(メタデータ) (2021-04-24T08:09:27Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
HSI分類のための自動グラフ学習法(MGCN-AGL)を用いたマルチレベルグラフ畳み込みネットワーク(GCN)を提案する。
空間的に隣接する領域における重要度を特徴付けるために注意機構を利用することで、最も関連性の高い情報を適応的に組み込んで意思決定を行うことができる。
MGCN-AGLは局所的に生成した表現表現に基づいて画像領域間の長距離依存性を符号化する。
論文 参考訳(メタデータ) (2020-09-19T09:26:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。