論文の概要: Distilling Style from Image Pairs for Global Forward and Inverse Tone
Mapping
- arxiv url: http://arxiv.org/abs/2209.15165v2
- Date: Tue, 4 Oct 2022 16:10:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 10:42:40.557370
- Title: Distilling Style from Image Pairs for Global Forward and Inverse Tone
Mapping
- Title(参考訳): グローバルフォワードおよび逆トーンマッピングのための画像対からの蒸留スタイル
- Authors: Aamir Mustafa, Param Hanji and Rafal K. Mantiuk
- Abstract要約: このスタイルに関する情報は画像対の集合から抽出され、2次元または3次元のベクトルに符号化されることを示す。
これらのネットワークは,低次元空間における画像スタイルの正規化において,PCAやVAEよりも有効であることを示す。
- 参考スコア(独自算出の注目度): 17.692674513446153
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Many image enhancement or editing operations, such as forward and inverse
tone mapping or color grading, do not have a unique solution, but instead a
range of solutions, each representing a different style. Despite this, existing
learning-based methods attempt to learn a unique mapping, disregarding this
style. In this work, we show that information about the style can be distilled
from collections of image pairs and encoded into a 2- or 3-dimensional vector.
This gives us not only an efficient representation but also an interpretable
latent space for editing the image style. We represent the global color mapping
between a pair of images as a custom normalizing flow, conditioned on a
polynomial basis of the pixel color. We show that such a network is more
effective than PCA or VAE at encoding image style in low-dimensional space and
lets us obtain an accuracy close to 40 dB, which is about 7-10 dB improvement
over the state-of-the-art methods.
- Abstract(参考訳): フォワードや逆トーンマッピングやカラーグレーディングといった多くの画像強調や編集操作は、独自のソリューションではなく、それぞれ異なるスタイルを表す様々なソリューションを持っている。
それにもかかわらず、既存の学習ベースの手法はこのスタイルを無視してユニークなマッピングを学習しようとする。
本研究では,このスタイルに関する情報を画像対の集合から蒸留し,2次元あるいは3次元ベクトルに符号化できることを示す。
これにより、効率的な表現だけでなく、画像スタイルを編集するための解釈可能な潜在空間も提供されます。
画素色に基づく多項式条件を条件とした,画像対間のグローバルカラーマッピングをカスタム正規化フローとして表現する。
このようなネットワークは,低次元空間における画像スタイルの符号化においてPCAやVAEよりも有効であることが示され,40dBに近い精度が得られる。
関連論文リスト
- PixelShuffler: A Simple Image Translation Through Pixel Rearrangement [0.0]
スタイル転送は画像から画像への変換の応用として広く研究されており、ある画像の内容を他の画像のスタイルと組み合わせた画像の合成が目的である。
既存の最先端の手法は、しばしば高品質なスタイル転送を実現するために拡散モデルや言語モデルを含む複雑なニューラルネットワークに依存している。
本稿では,画像から画像への変換問題に対処する新たなピクセルシャッフル手法を提案する。
論文 参考訳(メタデータ) (2024-10-03T22:08:41Z) - CricaVPR: Cross-image Correlation-aware Representation Learning for Visual Place Recognition [73.51329037954866]
視覚的位置認識のための画像間相関認識を用いたロバストなグローバル表現手法を提案する。
本手法では,バッチ内の複数の画像の相関にアテンション機構を用いる。
本手法は,訓練時間を大幅に短縮し,最先端の手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-02-29T15:05:11Z) - A Unified Arbitrary Style Transfer Framework via Adaptive Contrastive
Learning [84.8813842101747]
Unified Contrastive Arbitrary Style Transfer (UCAST)は、新しいスタイルの学習・伝達フレームワークである。
入力依存温度を導入することで,スタイル伝達のための適応型コントラスト学習方式を提案する。
本フレームワークは,スタイル表現とスタイル伝達のための並列コントラスト学習方式,スタイル分布を効果的に学習するためのドメイン拡張モジュール,スタイル伝達のための生成ネットワークという,3つの重要なコンポーネントから構成される。
論文 参考訳(メタデータ) (2023-03-09T04:35:00Z) - Learning Diverse Tone Styles for Image Retouching [73.60013618215328]
本稿では,フローベースアーキテクチャの標準化により,多様な画像のリタッチを学習することを提案する。
ジョイントトレーニングパイプラインは、スタイルエンコーダ、条件付きRetouchNet、イメージトーンスタイル正規化フロー(TSFlow)モジュールで構成される。
提案手法は最先端の手法に対して良好に動作し,多様な結果を生成するのに有効である。
論文 参考訳(メタデータ) (2022-07-12T09:49:21Z) - Domain Enhanced Arbitrary Image Style Transfer via Contrastive Learning [84.8813842101747]
Contrastive Arbitrary Style Transfer (CAST) は、新しいスタイル表現学習法である。
本フレームワークは,スタイルコード符号化のための多層スタイルプロジェクタ,スタイル分布を効果的に学習するためのドメイン拡張モジュール,画像スタイル転送のための生成ネットワークという,3つのキーコンポーネントから構成される。
論文 参考訳(メタデータ) (2022-05-19T13:11:24Z) - CAMS: Color-Aware Multi-Style Transfer [46.550390398057985]
スタイル転送は、ソースイメージ("content"イメージ)の外観を操作して、ターゲットの"style"イメージの類似したテクスチャと色を共有することを目的としている。
スタイルの転送を支援するために一般的に用いられるアプローチは、グラム行列最適化に基づいている。
スタイルと生成した画像のスタイルと色との相関を保ちながら、美的満足な結果を生成する色認識多形転写法を提案する。
論文 参考訳(メタデータ) (2021-06-26T01:15:09Z) - TransFill: Reference-guided Image Inpainting by Merging Multiple Color
and Spatial Transformations [35.9576572490994]
本稿では,対象画像とシーン内容を共有する別のソース画像を参照して,穴を埋めるマルチホモグラフィ変換核融合法であるtransfillを提案する。
色を調整し、各ホモグラフィー歪んだソースイメージにピクセルレベルのワーピングを適用して、ターゲットとの整合性を高めることを学びます。
本手法は,多種多様なベースラインと色差にまたがる画像対の最先端性能を実現し,ユーザ提供画像対に一般化する。
論文 参考訳(メタデータ) (2021-03-29T22:45:07Z) - Seed the Views: Hierarchical Semantic Alignment for Contrastive
Representation Learning [116.91819311885166]
一つの画像から生成されたビューをtextbfCross-samples や Multi-level representation に拡張することで,階層的なセマンティックアライメント戦略を提案する。
提案手法はCsMlと呼ばれ,サンプル間の多層視覚表現を堅牢な方法で統合する機能を備えている。
論文 参考訳(メタデータ) (2020-12-04T17:26:24Z) - Deep Line Art Video Colorization with a Few References [49.7139016311314]
そこで本稿では,対象の参照画像と同一のカラースタイルでラインアートビデオを自動的に色付けする深層アーキテクチャを提案する。
本フレームワークはカラートランスフォーメーションネットワークと時間制約ネットワークから構成される。
本モデルでは,少量のサンプルでパラメータを微調整することで,より優れたカラー化を実現することができる。
論文 参考訳(メタデータ) (2020-03-24T06:57:40Z) - P$^2$-GAN: Efficient Style Transfer Using Single Style Image [2.703193151632043]
スタイル転送は、与えられた画像を別の芸術的なスタイルに再レンダリングできる便利な画像合成技術である。
Generative Adversarial Network(GAN)は、ローカルスタイルパターンの表現能力を向上するために、このタスクに対して広く採用されているフレームワークである。
本稿では,ワンスタイル画像からストロークスタイルを効率的に学習できる新しいPatch Permutation GAN(P$2$-GAN)ネットワークを提案する。
論文 参考訳(メタデータ) (2020-01-21T12:08:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。