論文の概要: PixelShuffler: A Simple Image Translation Through Pixel Rearrangement
- arxiv url: http://arxiv.org/abs/2410.03021v1
- Date: Thu, 3 Oct 2024 22:08:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 04:25:56.037496
- Title: PixelShuffler: A Simple Image Translation Through Pixel Rearrangement
- Title(参考訳): Pixel Shuffler:Pixelの再配置による簡単な画像変換
- Authors: Omar Zamzam,
- Abstract要約: スタイル転送は画像から画像への変換の応用として広く研究されており、ある画像の内容を他の画像のスタイルと組み合わせた画像の合成が目的である。
既存の最先端の手法は、しばしば高品質なスタイル転送を実現するために拡散モデルや言語モデルを含む複雑なニューラルネットワークに依存している。
本稿では,画像から画像への変換問題に対処する新たなピクセルシャッフル手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image-to-image translation is a topic in computer vision that has a vast range of use cases ranging from medical image translation, such as converting MRI scans to CT scans or to other MRI contrasts, to image colorization, super-resolution, domain adaptation, and generating photorealistic images from sketches or semantic maps. Image style transfer is also a widely researched application of image-to-image translation, where the goal is to synthesize an image that combines the content of one image with the style of another. Existing state-of-the-art methods often rely on complex neural networks, including diffusion models and language models, to achieve high-quality style transfer, but these methods can be computationally expensive and intricate to implement. In this paper, we propose a novel pixel shuffle method that addresses the image-to-image translation problem generally with a specific demonstrative application in style transfer. The proposed method approaches style transfer by shuffling the pixels of the style image such that the mutual information between the shuffled image and the content image is maximized. This approach inherently preserves the colors of the style image while ensuring that the structural details of the content image are retained in the stylized output. We demonstrate that this simple and straightforward method produces results that are comparable to state-of-the-art techniques, as measured by the Learned Perceptual Image Patch Similarity (LPIPS) loss for content preservation and the Fr\'echet Inception Distance (FID) score for style similarity. Our experiments validate that the proposed pixel shuffle method achieves competitive performance with significantly reduced complexity, offering a promising alternative for efficient image style transfer, as well as a promise in usability of the method in general image-to-image translation tasks.
- Abstract(参考訳): MRIスキャンからCTスキャンやMRIコントラストへの変換、画像のカラー化、超高解像度化、ドメイン適応、スケッチやセマンティックマップからのフォトリアリスティック画像の生成など、幅広いユースケースを持つコンピュータビジョンのトピックである。
画像スタイル変換はまた、画像から画像への変換の応用として広く研究されており、その目的は、ある画像の内容と他の画像のスタイルを組み合わせるイメージを合成することである。
既存の最先端の手法は、拡散モデルや言語モデルを含む複雑なニューラルネットワークを使って高品質なスタイルの転送を実現するが、これらの手法は計算コストが高く、実装も複雑である。
本稿では,画像から画像への変換問題に対処する新しいピクセルシャッフル手法を提案する。
提案手法はスタイル画像の画素をシャッフルすることでスタイル転送にアプローチし、シャッフル画像とコンテンツ画像との相互情報を最大化する。
このアプローチは、内容画像の構造的詳細がスタイリングされた出力に保持されることを保証しながら、スタイル画像の色を本質的に保存する。
本稿では,コンテンツ保存のためのLPIPS(Learred Perceptual Image Patch similarity)と,スタイル類似性のためのFr\echet Inception Distance(FID)スコアを用いて,最先端技術に匹敵する結果が得られることを示す。
提案した画素シャッフル法は,画像スタイルの効率向上に期待できる代替手段を提供するとともに,画像から画像への変換タスクのユーザビリティ向上を約束する。
関連論文リスト
- Masked and Adaptive Transformer for Exemplar Based Image Translation [16.93344592811513]
ドメイン間のセマンティックマッチングは難しい。
正確なクロスドメイン対応を学習するためのマスク付き適応変換器(MAT)を提案する。
品質識別型スタイル表現を得るための新しいコントラスト型スタイル学習法を考案する。
論文 参考訳(メタデータ) (2023-03-30T03:21:14Z) - A Unified Arbitrary Style Transfer Framework via Adaptive Contrastive
Learning [84.8813842101747]
Unified Contrastive Arbitrary Style Transfer (UCAST)は、新しいスタイルの学習・伝達フレームワークである。
入力依存温度を導入することで,スタイル伝達のための適応型コントラスト学習方式を提案する。
本フレームワークは,スタイル表現とスタイル伝達のための並列コントラスト学習方式,スタイル分布を効果的に学習するためのドメイン拡張モジュール,スタイル伝達のための生成ネットワークという,3つの重要なコンポーネントから構成される。
論文 参考訳(メタデータ) (2023-03-09T04:35:00Z) - DiffStyler: Controllable Dual Diffusion for Text-Driven Image
Stylization [66.42741426640633]
DiffStylerは、拡散された結果の内容とスタイルのバランスを制御するための二重拡散処理アーキテクチャである。
本稿では、逆復調処理をベースとしたコンテンツ画像に基づく学習可能なノイズを提案し、そのスタイリング結果により、コンテンツ画像の構造情報をよりよく保存する。
論文 参考訳(メタデータ) (2022-11-19T12:30:44Z) - Diffusion-based Image Translation using Disentangled Style and Content
Representation [51.188396199083336]
セマンティックテキストや単一のターゲット画像でガイドされた拡散ベースの画像変換により、柔軟なスタイル変換が可能になった。
逆拡散中、画像の原内容を維持することはしばしば困難である。
本稿では,不整合スタイルとコンテンツ表現を用いた新しい拡散に基づく教師なし画像翻訳手法を提案する。
提案手法は,テキスト誘導と画像誘導の両方の翻訳作業において,最先端のベースラインモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-09-30T06:44:37Z) - Domain Enhanced Arbitrary Image Style Transfer via Contrastive Learning [84.8813842101747]
Contrastive Arbitrary Style Transfer (CAST) は、新しいスタイル表現学習法である。
本フレームワークは,スタイルコード符号化のための多層スタイルプロジェクタ,スタイル分布を効果的に学習するためのドメイン拡張モジュール,画像スタイル転送のための生成ネットワークという,3つのキーコンポーネントから構成される。
論文 参考訳(メタデータ) (2022-05-19T13:11:24Z) - APRNet: Attention-based Pixel-wise Rendering Network for Photo-Realistic
Text Image Generation [11.186226578337125]
スタイル誘導テキスト画像生成は、参照画像の外観を模倣してテキスト画像を合成しようとする。
本稿では,スタイル画像の背景と前景の色パターンをコンテンツ画像に転送し,写真リアルテキスト画像を生成することに焦点を当てる。
論文 参考訳(メタデータ) (2022-03-15T07:48:34Z) - Saliency Constrained Arbitrary Image Style Transfer using SIFT and DCNN [22.57205921266602]
一般的なニューラルスタイルの転送方法を使用する場合、スタイル画像のテクスチャや色は通常、コンテンツ画像に不完全に転送される。
本稿では,その効果を低減・回避するための新しいサリエンシ制約手法を提案する。
実験により、ソースイメージの正当性マップは正しいマッチングを見つけ出し、アーティファクトを避けるのに役立つことが示された。
論文 参考訳(メタデータ) (2022-01-14T09:00:55Z) - STALP: Style Transfer with Auxiliary Limited Pairing [36.23393954839379]
本稿では,1対のソース画像と,そのスタイリング画像を用いた画像の例ベーススタイリング手法を提案する。
本研究では,対象画像に対するリアルタイムな意味論的スタイル転送が可能な画像翻訳ネットワークの訓練方法を示す。
論文 参考訳(メタデータ) (2021-10-20T11:38:41Z) - TediGAN: Text-Guided Diverse Face Image Generation and Manipulation [52.83401421019309]
TediGANはマルチモーダル画像生成とテキスト記述による操作のためのフレームワークである。
StyleGANインバージョンモジュールは、よく訓練されたStyleGANの潜在空間に実際の画像をマッピングする。
視覚言語的類似性は、画像とテキストを共通の埋め込み空間にマッピングすることで、テキスト画像マッチングを学ぶ。
インスタンスレベルの最適化は、操作におけるID保存のためのものだ。
論文 参考訳(メタデータ) (2020-12-06T16:20:19Z) - Cross-domain Correspondence Learning for Exemplar-based Image
Translation [59.35767271091425]
本稿では,異なる領域の入力からフォトリアリスティックな画像を合成する,例題に基づく画像翻訳のためのフレームワークを提案する。
出力は、例において意味的に対応するオブジェクトと整合したスタイル(例えば、色、テクスチャ)を持つ。
本手法は画像品質の面で最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-04-12T09:10:57Z) - P$^2$-GAN: Efficient Style Transfer Using Single Style Image [2.703193151632043]
スタイル転送は、与えられた画像を別の芸術的なスタイルに再レンダリングできる便利な画像合成技術である。
Generative Adversarial Network(GAN)は、ローカルスタイルパターンの表現能力を向上するために、このタスクに対して広く採用されているフレームワークである。
本稿では,ワンスタイル画像からストロークスタイルを効率的に学習できる新しいPatch Permutation GAN(P$2$-GAN)ネットワークを提案する。
論文 参考訳(メタデータ) (2020-01-21T12:08:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。