論文の概要: Physical Adversarial Attack meets Computer Vision: A Decade Survey
- arxiv url: http://arxiv.org/abs/2209.15179v1
- Date: Fri, 30 Sep 2022 01:59:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-03 15:44:14.212122
- Title: Physical Adversarial Attack meets Computer Vision: A Decade Survey
- Title(参考訳): コンピュータービジョンを覆す物理的な敵の攻撃:10年間の調査
- Authors: Hui Wei, Hao Tang, Xuemei Jia, Hanxun Yu, Zhubo Li, Zhixiang Wang,
Shin'ichi Satoh, Zheng Wang
- Abstract要約: 画像に精巧な摂動を加えることで、Deep Neural Networksはパフォーマンス指標の破滅的な劣化を引き起こす可能性があることが、一連の研究で示されている。
本稿では,身体的敵意攻撃に着目し,150以上の既存論文を包括的に調査する。
本研究は, タスク順に, 分類, 検出, 再同定を行い, 有効性, 盗難性, 頑健性といったトリレンマを解く上での性能について紹介する。
- 参考スコア(独自算出の注目度): 31.310853804320924
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although Deep Neural Networks (DNNs) have achieved impressive results in
computer vision, their exposed vulnerability to adversarial attacks remains a
serious concern. A series of works has shown that by adding elaborate
perturbations to images, DNNs could have catastrophic degradation in
performance metrics. And this phenomenon does not only exist in the digital
space but also in the physical space. Therefore, estimating the security of
these DNNs-based systems is critical for safely deploying them in the real
world, especially for security-critical applications, e.g., autonomous cars,
video surveillance, and medical diagnosis. In this paper, we focus on physical
adversarial attacks and provide a comprehensive survey of over 150 existing
papers. We first clarify the concept of the physical adversarial attack and
analyze its characteristics. Then, we define the adversarial medium, essential
to perform attacks in the physical world. Next, we present the physical
adversarial attack methods in task order: classification, detection, and
re-identification, and introduce their performance in solving the trilemma:
effectiveness, stealthiness, and robustness. In the end, we discuss the current
challenges and potential future directions.
- Abstract(参考訳): Deep Neural Networks(DNN)はコンピュータビジョンにおいて印象的な成果を上げているが、敵の攻撃に対する脆弱性は依然として深刻な懸念である。
一連の研究により、画像に精巧な摂動を加えることで、DNNはパフォーマンス指標の破滅的な劣化を引き起こす可能性があることが示されている。
この現象はデジタル空間だけでなく、物理空間にも存在している。
したがって、これらのdnnsベースのシステムのセキュリティを推定することは、特に自動運転車、ビデオ監視、医療診断のようなセキュリティクリティカルなアプリケーションにおいて、現実世界に安全に配置するために重要である。
本稿では,身体的敵意攻撃に着目し,既存の150以上の論文を総合的に調査する。
まず,身体的敵意攻撃の概念を明らかにし,その特性を分析する。
次に、物理的な世界で攻撃を行うのに不可欠な敵媒体を定義する。
次に,物理的な敵対的攻撃手法である分類,検出,再同定をタスク順に提示し,その効果をトリレンマ(有効性,ステルス性,堅牢性)で紹介する。
最後に,現在の課題と今後の方向性について論じる。
関連論文リスト
- Attack Anything: Blind DNNs via Universal Background Adversarial Attack [17.73886733971713]
ディープニューラルネットワーク(DNN)は、敵の摂動に感受性があり、弱いことが広く実証されている。
本稿では,攻撃効果を多種多様な対象,モデル,タスク間でよく一般化する,攻撃の背景攻撃フレームワークを提案する。
我々は,様々な対象,モデル,タスクにまたがるデジタルドメインと物理ドメインの両方において,包括的かつ厳密な実験を行い,提案手法のあらゆる攻撃の有効性を実証した。
論文 参考訳(メタデータ) (2024-08-17T12:46:53Z) - Attention-Based Real-Time Defenses for Physical Adversarial Attacks in
Vision Applications [58.06882713631082]
ディープニューラルネットワークはコンピュータビジョンタスクにおいて優れたパフォーマンスを示すが、現実の敵攻撃に対する脆弱性は深刻なセキュリティ上の懸念を引き起こす。
本稿では、敵チャネルの注意力を利用して、浅いネットワーク層における悪意のある物体を素早く識別・追跡する、効果的な注意に基づく防御機構を提案する。
また、効率的な多フレーム防御フレームワークを導入し、防御性能と計算コストの両方を評価することを目的とした広範な実験を通じて、その有効性を検証した。
論文 参考訳(メタデータ) (2023-11-19T00:47:17Z) - Physical Adversarial Attacks For Camera-based Smart Systems: Current
Trends, Categorization, Applications, Research Challenges, and Future Outlook [2.1771693754641013]
本研究の目的は,身体的敵意攻撃の概念を深く理解し,その特徴を分析し,特徴を識別することである。
本稿では, 対象タスクに応じて異なるアプリケーションで分類した, 様々な物理的敵攻撃手法について検討する。
本研究は,これらの攻撃手法の有効性,ステルス性,ロバスト性の観点から評価する。
論文 参考訳(メタデータ) (2023-08-11T15:02:19Z) - Contextual adversarial attack against aerial detection in the physical
world [8.826711009649133]
ディープニューラルネットワーク(DNN)は、空中検出に広く利用されている。
物理的な攻撃は、現実の世界でより実践的であるため、徐々にホットな問題になっている。
本研究では,実シナリオにおける空中検出に対する革新的なコンテキストアタック手法を提案する。
論文 参考訳(メタデータ) (2023-02-27T02:57:58Z) - Visually Adversarial Attacks and Defenses in the Physical World: A
Survey [27.40548512511512]
コンピュータビジョンにおける現在の敵攻撃は、それぞれの攻撃形態に応じてデジタル攻撃と物理的攻撃に分けられる。
本稿では,コンピュータビジョンにおける現在の身体的敵意攻撃と身体的敵意防御に対する調査を要約する。
論文 参考訳(メタデータ) (2022-11-03T09:28:45Z) - A Survey on Physical Adversarial Attack in Computer Vision [7.053905447737444]
ディープニューラルネットワーク(DNN)は、悪意のある小さなノイズによって作られた敵の例に弱いことが示されている。
DNNベースのシステムを現実世界に展開する機会が増えているため、これらのシステムの堅牢性を強化することは非常事態である。
論文 参考訳(メタデータ) (2022-09-28T17:23:52Z) - Robust Physical-World Attacks on Face Recognition [52.403564953848544]
ディープニューラルネットワーク(DNN)の開発によって顔認識が大幅に促進された
近年の研究では、DNNは敵対的な事例に対して非常に脆弱であることが示されており、現実世界の顔認識の安全性に対する深刻な懸念が提起されている。
ステッカーによる顔認識の物理的攻撃について検討し、その対向的堅牢性をよりよく理解する。
論文 参考訳(メタデータ) (2021-09-20T06:49:52Z) - Evaluating the Robustness of Semantic Segmentation for Autonomous
Driving against Real-World Adversarial Patch Attacks [62.87459235819762]
自動運転車のような現実のシナリオでは、現実の敵例(RWAE)にもっと注意を払わなければならない。
本稿では,デジタルおよび実世界の敵対パッチの効果を検証し,一般的なSSモデルのロバスト性を詳細に評価する。
論文 参考訳(メタデータ) (2021-08-13T11:49:09Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
本稿では,ディープニューラルネットワークを用いた顔認識システムの実用性について検討する。
皮膚の色,性別,年齢などの要因が,特定の標的に対する攻撃を行う能力に影響を及ぼすことを示す。
また,攻撃者の顔のさまざまなポーズや視点に対して堅牢なユニバーサルアタックを構築する可能性についても検討した。
論文 参考訳(メタデータ) (2020-08-26T19:27:27Z) - Spatiotemporal Attacks for Embodied Agents [119.43832001301041]
我々は、エンボディエージェントに対する敵攻撃を研究するための第一歩を踏み出した。
特に,時間次元と空間次元の両方の相互作用履歴を利用する逆例を生成する。
我々の摂動は強力な攻撃力と一般化能力を持っている。
論文 参考訳(メタデータ) (2020-05-19T01:38:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。