Mutual Learning Network for Multi-Source Domain Adaptation
- URL: http://arxiv.org/abs/2003.12944v1
- Date: Sun, 29 Mar 2020 04:31:43 GMT
- Title: Mutual Learning Network for Multi-Source Domain Adaptation
- Authors: Zhenpeng Li, Zhen Zhao, Yuhong Guo, Haifeng Shen, Jieping Ye
- Abstract summary: We propose a novel multi-source domain adaptation method, Mutual Learning Network for Multiple Source Domain Adaptation (ML-MSDA)
Under the framework of mutual learning, the proposed method pairs the target domain with each single source domain to train a conditional adversarial domain adaptation network as a branch network.
The proposed method outperforms the comparison methods and achieves the state-of-the-art performance.
- Score: 73.25974539191553
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Early Unsupervised Domain Adaptation (UDA) methods have mostly assumed the
setting of a single source domain, where all the labeled source data come from
the same distribution. However, in practice the labeled data can come from
multiple source domains with different distributions. In such scenarios, the
single source domain adaptation methods can fail due to the existence of domain
shifts across different source domains and multi-source domain adaptation
methods need to be designed. In this paper, we propose a novel multi-source
domain adaptation method, Mutual Learning Network for Multiple Source Domain
Adaptation (ML-MSDA). Under the framework of mutual learning, the proposed
method pairs the target domain with each single source domain to train a
conditional adversarial domain adaptation network as a branch network, while
taking the pair of the combined multi-source domain and target domain to train
a conditional adversarial adaptive network as the guidance network. The
multiple branch networks are aligned with the guidance network to achieve
mutual learning by enforcing JS-divergence regularization over their prediction
probability distributions on the corresponding target data. We conduct
extensive experiments on multiple multi-source domain adaptation benchmark
datasets. The results show the proposed ML-MSDA method outperforms the
comparison methods and achieves the state-of-the-art performance.
Related papers
- Aligning Domain-specific Distribution and Classifier for Cross-domain
Classification from Multiple Sources [25.204055330850164]
We propose a new framework with two alignment stages for Unsupervised Domain Adaptation.
Our method can achieve remarkable results on popular benchmark datasets for image classification.
arXiv Detail & Related papers (2022-01-04T06:35:11Z) - Multi-Source domain adaptation via supervised contrastive learning and
confident consistency regularization [0.0]
Multi-Source Unsupervised Domain Adaptation (multi-source UDA) aims to learn a model from several labeled source domains.
We propose Contrastive Multi-Source Domain Adaptation (CMSDA) for multi-source UDA that addresses this limitation.
arXiv Detail & Related papers (2021-06-30T14:39:15Z) - Domain Consistency Regularization for Unsupervised Multi-source Domain
Adaptive Classification [57.92800886719651]
Deep learning-based multi-source unsupervised domain adaptation (MUDA) has been actively studied in recent years.
domain shift in MUDA exists not only between the source and target domains but also among multiple source domains.
We propose an end-to-end trainable network that exploits domain Consistency Regularization for unsupervised Multi-source domain Adaptive classification.
arXiv Detail & Related papers (2021-06-16T07:29:27Z) - Aggregating From Multiple Target-Shifted Sources [7.644958631142882]
Multi-source domain adaptation aims at leveraging the knowledge from multiple tasks for predicting a related target domain.
In this paper, we analyzed the problem for aggregating source domains with different label distributions, where most recent source selection approaches fail.
Our proposed algorithm differs from previous approaches in two key ways: the model aggregates multiple sources mainly through the similarity of semantic conditional distribution rather than marginal distribution.
arXiv Detail & Related papers (2021-05-09T23:25:29Z) - Multi-Source Domain Adaptation with Collaborative Learning for Semantic
Segmentation [32.95273803359897]
Multi-source unsupervised domain adaptation(MSDA) aims at adapting models trained on multiple labeled source domains to an unlabeled target domain.
We propose a novel multi-source domain adaptation framework based on collaborative learning for semantic segmentation.
arXiv Detail & Related papers (2021-03-08T12:51:42Z) - Curriculum CycleGAN for Textual Sentiment Domain Adaptation with
Multiple Sources [68.31273535702256]
We propose a novel instance-level MDA framework, named curriculum cycle-consistent generative adversarial network (C-CycleGAN)
C-CycleGAN consists of three components: (1) pre-trained text encoder which encodes textual input from different domains into a continuous representation space, (2) intermediate domain generator with curriculum instance-level adaptation which bridges the gap across source and target domains, and (3) task classifier trained on the intermediate domain for final sentiment classification.
We conduct extensive experiments on three benchmark datasets and achieve substantial gains over state-of-the-art DA approaches.
arXiv Detail & Related papers (2020-11-17T14:50:55Z) - Domain Conditioned Adaptation Network [90.63261870610211]
We propose a Domain Conditioned Adaptation Network (DCAN) to excite distinct convolutional channels with a domain conditioned channel attention mechanism.
This is the first work to explore the domain-wise convolutional channel activation for deep DA networks.
arXiv Detail & Related papers (2020-05-14T04:23:24Z) - MADAN: Multi-source Adversarial Domain Aggregation Network for Domain
Adaptation [58.38749495295393]
Domain adaptation aims to learn a transferable model to bridge the domain shift between one labeled source domain and another sparsely labeled or unlabeled target domain.
Recent multi-source domain adaptation (MDA) methods do not consider the pixel-level alignment between sources and target.
We propose a novel MDA framework to address these challenges.
arXiv Detail & Related papers (2020-02-19T21:22:00Z) - Multi-source Domain Adaptation for Visual Sentiment Classification [92.53780541232773]
We propose a novel multi-source domain adaptation (MDA) method, termed Multi-source Sentiment Generative Adversarial Network (MSGAN)
To handle data from multiple source domains, MSGAN learns to find a unified sentiment latent space where data from both the source and target domains share a similar distribution.
Extensive experiments conducted on four benchmark datasets demonstrate that MSGAN significantly outperforms the state-of-the-art MDA approaches for visual sentiment classification.
arXiv Detail & Related papers (2020-01-12T08:37:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.