論文の概要: FusionRetro: Molecule Representation Fusion via In-Context Learning for
Retrosynthetic Planning
- arxiv url: http://arxiv.org/abs/2209.15315v4
- Date: Wed, 31 May 2023 13:45:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-02 04:20:12.278069
- Title: FusionRetro: Molecule Representation Fusion via In-Context Learning for
Retrosynthetic Planning
- Title(参考訳): FusionRetro:再合成計画のためのインコンテキスト学習による分子表現融合
- Authors: Songtao Liu, Zhengkai Tu, Minkai Xu, Zuobai Zhang, Lu Lin, Rex Ying,
Jian Tang, Peilin Zhao, Dinghao Wu
- Abstract要約: 再合成計画(Retrosynthetic Planning)は、開始物質から標的分子への完全な多段階合成経路を考案することを目的としている。
現在の戦略では、単一ステップの逆合成モデルと探索アルゴリズムの分離されたアプローチを採用している。
本稿では,文脈情報を利用した新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 58.47265392465442
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrosynthetic planning aims to devise a complete multi-step synthetic route
from starting materials to a target molecule. Current strategies use a
decoupled approach of single-step retrosynthesis models and search algorithms,
taking only the product as the input to predict the reactants for each planning
step and ignoring valuable context information along the synthetic route. In
this work, we propose a novel framework that utilizes context information for
improved retrosynthetic planning. We view synthetic routes as reaction graphs
and propose to incorporate context through three principled steps: encode
molecules into embeddings, aggregate information over routes, and readout to
predict reactants. Our approach is the first attempt to utilize in-context
learning for retrosynthesis prediction in retrosynthetic planning. The entire
framework can be efficiently optimized in an end-to-end fashion and produce
more practical and accurate predictions. Comprehensive experiments demonstrate
that by fusing in the context information over routes, our model significantly
improves the performance of retrosynthetic planning over baselines that are not
context-aware, especially for long synthetic routes. Code is available at
https://github.com/SongtaoLiu0823/FusionRetro.
- Abstract(参考訳): 再合成計画(Retrosynthetic Planning)は、材料からターゲット分子への完全な多段階合成経路を考案することを目的としている。
現在の戦略では、単一ステップの逆合成モデルと探索アルゴリズムの分離されたアプローチを用いて、製品のみを入力として各計画ステップの反応を予測し、合成経路に沿った貴重なコンテキスト情報を無視する。
そこで本研究では,文脈情報を利用した新しいフレームワークを提案する。
我々は合成経路を反応グラフとみなし、分子を埋め込みにエンコードし、経路上の情報を集約し、反応物を予測するための読み出しという3つの原理的なステップを通じてコンテキストを組み込むことを提案する。
本手法は,逆合成計画における逆合成予測に文脈学習を利用した最初の試みである。
フレームワーク全体はエンドツーエンドの方法で効率的に最適化でき、より実用的で正確な予測ができる。
総合実験により, 経路上のコンテキスト情報を融合することにより, 特に長い合成経路において, ベースライン上での逆合成計画の性能が著しく向上することを示した。
コードはhttps://github.com/SongtaoLiu0823/FusionRetroで公開されている。
関連論文リスト
- Retro-prob: Retrosynthetic Planning Based on a Probabilistic Model [5.044138778500218]
再合成は有機化学の基本的だが挑戦的な課題である。
標的分子を与えられた後生合成の目標は、合成経路に組み立てられる一連の反応を見つけることである。
本稿では,標的分子の合成確率を最大化するために,retro-probと呼ばれる新しい逆合成計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-25T08:23:40Z) - SynthesizRR: Generating Diverse Datasets with Retrieval Augmentation [55.2480439325792]
トピック分類,感情分析,トーン検出,ユーモアの6つのデータセットの合成について検討した。
その結果,SynthesizRRは語彙や意味の多様性,人文との類似性,蒸留性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-05-16T12:22:41Z) - ORES: Open-vocabulary Responsible Visual Synthesis [104.7572323359984]
我々は、新しいタスクであるオープン語彙対応視覚合成(ORES)を定式化し、そこで合成モデルは、禁止された視覚概念を避けることができる。
この問題に対処するため,我々はTIN(Two-stage Intervention)フレームワークを提案する。
1)大規模言語モデル(LLM)による学習可能な命令による書き直し,2)拡散モデルへの迅速な介入による合成を行うことで,概念を避けながら可能な限りユーザのクエリに従うイメージを効果的に合成することができる。
論文 参考訳(メタデータ) (2023-08-26T06:47:34Z) - Models Matter: The Impact of Single-Step Retrosynthesis on Synthesis
Planning [0.8620335948752805]
再合成は、化学化合物を段階的に分子前駆体に分解する。
その2つの主要な研究方向、単段階の逆合成予測と多段階の合成計画は本質的に相互に絡み合っている。
単一ステップモデルを選択することで,合成計画の総合的な成功率を最大28%向上させることができることを示す。
論文 参考訳(メタデータ) (2023-08-10T12:04:47Z) - ContraNeRF: Generalizable Neural Radiance Fields for Synthetic-to-real
Novel View Synthesis via Contrastive Learning [102.46382882098847]
まず,合成から現実への新規な視点合成における合成データの影響について検討した。
本稿では,幾何制約を伴う多視点一貫した特徴を学習するために,幾何対応のコントラスト学習を導入することを提案する。
提案手法は,PSNR,SSIM,LPIPSの点で,既存の一般化可能な新規ビュー合成手法よりも高い画質で精細な画像を描画することができる。
論文 参考訳(メタデータ) (2023-03-20T12:06:14Z) - MechRetro is a chemical-mechanism-driven graph learning framework for
interpretable retrosynthesis prediction and pathway planning [10.364476820771607]
MechRetroは、再合成予測と経路計画を解釈可能なグラフ学習フレームワークである。
化学知識を先行情報として統合することにより,新しいグラフトランスアーキテクチャを設計する。
我々はMechRetroが、大規模なベンチマークデータセットに対して大きなマージンで、レトロシンセティック予測のための最先端のアプローチよりも優れていることを実証した。
論文 参考訳(メタデータ) (2022-10-06T01:27:53Z) - Retroformer: Pushing the Limits of Interpretable End-to-end
Retrosynthesis Transformer [15.722719721123054]
再合成予測は有機合成の基本的な課題の1つである。
本稿では,レトロシンセシス予測のためのトランスフォーマーに基づく新しいアーキテクチャであるRetroformerを提案する。
Retroformerは、エンドツーエンドのテンプレートフリーレトロシンセシスのための新しい最先端の精度に達する。
論文 参考訳(メタデータ) (2022-01-29T02:03:55Z) - RetroXpert: Decompose Retrosynthesis Prediction like a Chemist [60.463900712314754]
そこで我々は, テンプレートフリーな自動逆合成拡張アルゴリズムを考案した。
我々の方法はレトロシンセシスを2段階に分解する。
最先端のベースラインよりも優れている一方で、我々のモデルは化学的に合理的な解釈も提供する。
論文 参考訳(メタデータ) (2020-11-04T04:35:34Z) - Retrosynthesis Prediction with Conditional Graph Logic Network [118.70437805407728]
コンピュータ支援のレトロシンセシスは、化学と計算機科学の双方から新たな関心を集めている。
本稿では,グラフニューラルネットワーク上に構築された条件付きグラフィカルモデルであるConditional Graph Logic Networkを用いて,この課題に対する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-01-06T05:36:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。