論文の概要: Convolutional Neural Networks Quantization with Attention
- arxiv url: http://arxiv.org/abs/2209.15317v1
- Date: Fri, 30 Sep 2022 08:48:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-03 14:31:56.870239
- Title: Convolutional Neural Networks Quantization with Attention
- Title(参考訳): 注意を伴う畳み込みニューラルネットワーク量子化
- Authors: Binyi Wu, Bernd Waschneck, Christian Georg Mayr
- Abstract要約: 二重段Squeeze-and-Threshold法(二重段ST)を提案する。
注意機構を使ってネットワークを定量化し、最先端の結果を得る。
- 参考スコア(独自算出の注目度): 1.0312968200748118
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It has been proven that, compared to using 32-bit floating-point numbers in
the training phase, Deep Convolutional Neural Networks (DCNNs) can operate with
low precision during inference, thereby saving memory space and power
consumption. However, quantizing networks is always accompanied by an accuracy
decrease. Here, we propose a method, double-stage Squeeze-and-Threshold
(double-stage ST). It uses the attention mechanism to quantize networks and
achieve state-of-art results. Using our method, the 3-bit model can achieve
accuracy that exceeds the accuracy of the full-precision baseline model. The
proposed double-stage ST activation quantization is easy to apply: inserting it
before the convolution.
- Abstract(参考訳): トレーニングフェーズで32ビット浮動小数点数を使用するのに比べ、ディープ畳み込みニューラルネットワーク(dcnn)は推論中に精度が低く、メモリ空間と消費電力を節約できることが証明されている。
しかし、ネットワークの量子化は常に精度の低下を伴う。
本稿では,2段Squeeze-and-Threshold法(ダブルステージST)を提案する。
注意機構を使ってネットワークを定量化し、最先端の結果を得る。
本手法により, 3ビットモデルでは, 全精度のベースラインモデルの精度を超過する精度が得られる。
提案された2段STアクティベーション量子化は、畳み込みの前に挿入することが容易である。
関連論文リスト
- Mixed Precision Post Training Quantization of Neural Networks with
Sensitivity Guided Search [7.392278887917975]
混合精度量子化により、異なるテンソルを様々な数値精度のレベルに量子化することができる。
我々は,コンピュータビジョンと自然言語処理の手法を評価し,最大27.59%,34.31%のレイテンシ低減を実証した。
論文 参考訳(メタデータ) (2023-02-02T19:30:00Z) - Automatic Network Adaptation for Ultra-Low Uniform-Precision
Quantization [6.1664476076961146]
一様精度ニューラルネットワーク量子化は、高計算能力のために高密度に充填された演算ユニットを単純化したため、人気を集めている。
層間の量子化誤差の影響に対して不均一な感度を無視し、結果として準最適推論をもたらす。
本研究は,超低精度量子化による精度劣化を軽減するために,ニューラルネットワーク構造を調整するニューラルチャネル拡張と呼ばれる新しいニューラルアーキテクチャ探索を提案する。
論文 参考訳(メタデータ) (2022-12-21T09:41:25Z) - Standard Deviation-Based Quantization for Deep Neural Networks [17.495852096822894]
深層ニューラルネットワークの量子化は、推論コストを低減するための有望なアプローチである。
ネットワークの重みと活性化分布の知識を用いて量子化間隔(離散値)を学習する新しいフレームワークを提案する。
提案手法は,ネットワークのパラメータを同時に推定し,量子化過程におけるプルーニング比を柔軟に調整する。
論文 参考訳(メタデータ) (2022-02-24T23:33:47Z) - Mixed Precision Low-bit Quantization of Neural Network Language Models
for Speech Recognition [67.95996816744251]
長期間のメモリリカレントニューラルネットワーク(LSTM-RNN)とトランスフォーマーで表される最先端言語モデル(LM)は、実用アプリケーションではますます複雑で高価なものになりつつある。
現在の量子化法は、均一な精度に基づいており、量子化誤差に対するLMの異なる部分での様々な性能感度を考慮できない。
本稿では,新しい混合精度ニューラルネットワークLM量子化法を提案する。
論文 参考訳(メタデータ) (2021-11-29T12:24:02Z) - n-hot: Efficient bit-level sparsity for powers-of-two neural network
quantization [0.0]
パワーオブツー(PoT)量子化は、リソース制約ハードウェア上でのディープニューラルネットワークのビット演算数を減少させる。
PoT量子化は、表現能力が限られているため、深刻な精度低下を引き起こす。
メモリ効率の高い方法で精度とコストを両立した効率的なPoT量子化方式を提案する。
論文 参考訳(メタデータ) (2021-03-22T10:13:12Z) - Searching for Low-Bit Weights in Quantized Neural Networks [129.8319019563356]
低ビットの重みとアクティベーションを持つ量子ニューラルネットワークは、AIアクセラレータを開発する上で魅力的なものだ。
本稿では、任意の量子化ニューラルネットワークにおける離散重みを探索可能な変数とみなし、差分法を用いて正確に探索する。
論文 参考訳(メタデータ) (2020-09-18T09:13:26Z) - FATNN: Fast and Accurate Ternary Neural Networks [89.07796377047619]
Ternary Neural Networks (TNN) は、完全な精度のニューラルネットワークよりもはるかに高速で、電力効率が高いため、多くの注目を集めている。
そこで本研究では、3次内積の計算複雑性を2。
性能ギャップを軽減するために,実装に依存した3次量子化アルゴリズムを精巧に設計する。
論文 参考訳(メタデータ) (2020-08-12T04:26:18Z) - WrapNet: Neural Net Inference with Ultra-Low-Resolution Arithmetic [57.07483440807549]
ニューラルネットワークをアキュムレータの低分解能(8ビット)加算に適応させ,32ビットのアキュムレータに匹敵する分類精度を実現する手法を提案する。
ソフトウェアプラットフォームとハードウェアプラットフォームの両方において、我々のアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-07-26T23:18:38Z) - APQ: Joint Search for Network Architecture, Pruning and Quantization
Policy [49.3037538647714]
本稿では,リソース制約のあるハードウェア上での効率的なディープラーニング推論のためのAPQを提案する。
ニューラルアーキテクチャ、プルーニングポリシー、量子化ポリシーを別々に検索する従来の方法とは異なり、我々はそれらを共同で最適化する。
同じ精度で、APQはMobileNetV2+HAQよりもレイテンシ/エネルギーを2倍/1.3倍削減する。
論文 参考訳(メタデータ) (2020-06-15T16:09:17Z) - WaveQ: Gradient-Based Deep Quantization of Neural Networks through
Sinusoidal Adaptive Regularization [8.153944203144988]
深部量子化トレーニングのための新しい正弦波正則化SINAREQを提案する。
我々はSINAREQが計算効率と精度のバランスをとる方法を示し、多種多様な深層ネットワークの量子化のための異種ビット幅割り当てを提供する。
論文 参考訳(メタデータ) (2020-02-29T01:19:55Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
量子化ニューラルネットワーク(QNN)は、非常に安価な計算とストレージオーバーヘッドのため、業界にとって非常に魅力的なものだが、その性能は、完全な精度パラメータを持つネットワークよりも悪い。
既存の手法の多くは、より効果的なトレーニング技術を利用して、特にバイナリニューラルネットワークの性能を高めることを目的としている。
本稿では,従来の完全精度ネットワークで高次元量子化機能に特徴を投影することで,この問題に対処する。
論文 参考訳(メタデータ) (2020-02-03T04:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。