論文の概要: TinyTurbo: Efficient Turbo Decoders on Edge
- arxiv url: http://arxiv.org/abs/2209.15614v1
- Date: Fri, 30 Sep 2022 17:38:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-03 17:00:34.615680
- Title: TinyTurbo: Efficient Turbo Decoders on Edge
- Title(参考訳): TinyTurbo: Edge上の効率的なターボデコーダ
- Authors: S Ashwin Hebbar, Rajesh K Mishra, Sravan Kumar Ankireddy, Ashok V
Makkuva, Hyeji Kim, Pramod Viswanath
- Abstract要約: TINYTURBOと呼ばれるターボ符号のためのニューラルネットワークデコーダを提案する。
TINYTURBO は EPA や EVA など,LTE 規格に含まれる様々な実用チャネルに対して強い堅牢性を示すことを示す。
- 参考スコア(独自算出の注目度): 19.8355242560717
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce a neural-augmented decoder for Turbo codes called
TINYTURBO . TINYTURBO has complexity comparable to the classical max-log-MAP
algorithm but has much better reliability than the max-log-MAP baseline and
performs close to the MAP algorithm. We show that TINYTURBO exhibits strong
robustness on a variety of practical channels of interest, such as EPA and EVA
channels, which are included in the LTE standards. We also show that TINYTURBO
strongly generalizes across different rate, blocklengths, and trellises. We
verify the reliability and efficiency of TINYTURBO via over-the-air
experiments.
- Abstract(参考訳): 本稿では,TINYTURBOと呼ばれるターボ符号のためのニューラルネットワークデコーダを提案する。
TINYTURBOは、従来のmax-log-MAPアルゴリズムに匹敵する複雑さを持つが、max-log-MAPベースラインよりも信頼性が高く、MAPアルゴリズムに近い性能を持つ。
TINYTURBO は EPA や EVA など,LTE 規格に含まれる様々な実用チャネルに対して強い堅牢性を示すことを示す。
また、TINYTURBOは、異なる速度、ブロック長、トレライズを強く一般化することを示した。
地上実験により,tinyturboの信頼性と効率を検証した。
関連論文リスト
- Accelerating Vision Diffusion Transformers with Skip Branches [46.19946204953147]
Diffusion Transformers (DiT) は、新しい画像およびビデオ生成モデルアーキテクチャである。
DiTの実践的な展開は、シーケンシャルな denoising プロセスにおける計算複雑性と冗長性によって制約される。
我々は,Skip-DiTを導入し,Skip-DiTをスキップブランチでSkip-DiTに変換し,特徴のスムーズさを高める。
また、Skip-Cacheを導入します。これは、スキップブランチを使用して、推論時にタイムステップ毎にDiT機能をキャッシュします。
論文 参考訳(メタデータ) (2024-11-26T17:28:10Z) - Dynamic Tuning Towards Parameter and Inference Efficiency for ViT Adaptation [67.13876021157887]
動的チューニング(DyT)は、ViT適応のためのパラメータと推論効率を改善するための新しいアプローチである。
DyTは既存のPEFT法に比べて性能が優れており、VTAB-1KベンチマークではFLOPの71%しか呼び出されていない。
論文 参考訳(メタデータ) (2024-03-18T14:05:52Z) - TransAxx: Efficient Transformers with Approximate Computing [4.347898144642257]
Vision Transformer (ViT) モデルは非常に競争力があり、畳み込みニューラルネットワーク (CNN) の代替として人気がある。
本稿では,PyTorchライブラリをベースとしたフレームワークであるTransAxxを提案する。
提案手法では,モンテカルロ木探索(MCTS)アルゴリズムを用いて,構成可能な空間を効率的に探索する。
論文 参考訳(メタデータ) (2024-02-12T10:16:05Z) - Parameter-Efficient Orthogonal Finetuning via Butterfly Factorization [102.92240148504774]
下流タスク適応のための原則的微調整パラダイムである直交微調整(Orthogonal Finetuning, OFT)について検討する。
優れた一般化性を示しているにもかかわらず、OFTはまだかなり多くのトレーニング可能なパラメータを使っている。
我々はこのパラメータ化をOFTに適用し、ORFT(Orthogonal Butterfly)と呼ばれる新しいパラメータ効率の微調整法を開発した。
論文 参考訳(メタデータ) (2023-11-10T18:59:54Z) - Block-wise Bit-Compression of Transformer-based Models [9.77519365079468]
再学習を伴わない変圧器のブロックワイドビット圧縮法であるBBCTを提案する。
GLUE(General Language Understanding Evaluation)のベンチマークテストの結果,ほとんどのタスクにおいて,BBCTは1%未満の精度低下を達成できることがわかった。
論文 参考訳(メタデータ) (2023-03-16T09:53:57Z) - MiniALBERT: Model Distillation via Parameter-Efficient Recursive
Transformers [12.432191400869002]
MiniALBERTは、完全にパラメータ化されたLM(BERTなど)の知識をコンパクトな再帰的な学生に変換する技術である。
提案したモデルを,様々な一般的・バイオメディカルなNLPタスクで検証し,その有効性を実証し,最先端および既存のコンパクトモデルと比較した。
論文 参考訳(メタデータ) (2022-10-12T17:23:21Z) - BiBERT: Accurate Fully Binarized BERT [69.35727280997617]
BiBERTは、パフォーマンスボトルネックを取り除くために、正確に2項化されたBERTである。
提案手法は,FLOPとモデルサイズで56.3回,31.2回節約できる。
論文 参考訳(メタデータ) (2022-03-12T09:46:13Z) - AutoBERT-Zero: Evolving BERT Backbone from Scratch [94.89102524181986]
そこで本稿では,提案するハイブリッドバックボーンアーキテクチャを自動検索するOP-NASアルゴリズムを提案する。
提案するOP-NASの効率を向上させるために,探索アルゴリズムと候補モデルの評価を最適化する。
実験の結果、検索されたアーキテクチャ(AutoBERT-Zero)は、様々な下流タスクにおいてBERTとそのバリエーションの異なるモデル容量を著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-07-15T16:46:01Z) - FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation [81.76975488010213]
ディセンス光学フロー推定は、多くのロボットビジョンタスクで重要な役割を果たしています。
現在のネットワークはしばしば多くのパラメータを占有し、計算コストがかかる。
提案したFastFlowNetは、周知の粗大なやり方で、以下のイノベーションで機能する。
論文 参考訳(メタデータ) (2021-03-08T03:09:37Z) - DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference [69.93692147242284]
BERTのような大規模事前訓練型言語モデルは、NLPアプリケーションに大幅な改善をもたらした。
本稿では, BERT推論を高速化するために, 単純だが効果的な手法であるDeeBERTを提案する。
実験の結果、DeeBERTはモデル品質の低下を最小限に抑えながら、最大40%の推論時間を節約できることがわかった。
論文 参考訳(メタデータ) (2020-04-27T17:58:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。