論文の概要: Learning Robust Kernel Ensembles with Kernel Average Pooling
- arxiv url: http://arxiv.org/abs/2210.00062v2
- Date: Tue, 30 May 2023 15:49:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-01 02:37:13.435060
- Title: Learning Robust Kernel Ensembles with Kernel Average Pooling
- Title(参考訳): カーネル平均プールによるロバストカーネルのアンサンブル学習
- Authors: Pouya Bashivan, Adam Ibrahim, Amirozhan Dehghani, Yifei Ren
- Abstract要約: 本稿では,階層活性化テンソルのカーネル次元に沿って平均フィルタを適用するニューラルネットワーク構築ブロックであるKernel Average Pooling(KAP)を紹介する。
類似機能を持つカーネルのアンサンブルは、KAPを装備した畳み込みニューラルネットワークにおいて自然に出現し、バックプロパゲーションで訓練されることを示す。
- 参考スコア(独自算出の注目度): 3.6540368812166872
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Model ensembles have long been used in machine learning to reduce the
variance in individual model predictions, making them more robust to input
perturbations. Pseudo-ensemble methods like dropout have also been commonly
used in deep learning models to improve generalization. However, the
application of these techniques to improve neural networks' robustness against
input perturbations remains underexplored. We introduce Kernel Average Pooling
(KAP), a neural network building block that applies the mean filter along the
kernel dimension of the layer activation tensor. We show that ensembles of
kernels with similar functionality naturally emerge in convolutional neural
networks equipped with KAP and trained with backpropagation. Moreover, we show
that when trained on inputs perturbed with additive Gaussian noise, KAP models
are remarkably robust against various forms of adversarial attacks. Empirical
evaluations on CIFAR10, CIFAR100, TinyImagenet, and Imagenet datasets show
substantial improvements in robustness against strong adversarial attacks such
as AutoAttack without training on any adversarial examples.
- Abstract(参考訳): モデルアンサンブルは、個々のモデル予測のばらつきを減らし、入力摂動をより堅牢にするために、機械学習で長い間使われてきた。
dropoutのような疑似センスブルメソッドは、一般化を改善するためにディープラーニングモデルでも一般的に使われている。
しかし、これらの技術の入力摂動に対するニューラルネットワークの頑健性向上への応用は未検討のままである。
本稿では,階層活性化テンソルのカーネル次元に沿って平均フィルタを適用するニューラルネットワーク構築ブロックであるKernel Average Pooling(KAP)を紹介する。
同様の機能を持つカーネルのアンサンブルは、kapを搭載した畳み込みニューラルネットワークに自然に出現し、バックプロパゲーションで訓練される。
さらに,加法ガウス雑音による入力をトレーニングした場合,KAPモデルは様々な形態の敵攻撃に対して極めて堅牢であることを示す。
CIFAR10、CIFAR100、TinyImagenet、Imagenetデータセットに対する実証的な評価は、AutoAttackのような強力な敵攻撃に対して、敵の例をトレーニングすることなく、堅牢性を大幅に改善したことを示している。
関連論文リスト
- MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
ディープニューラルネットワーク(DNN)は、わずかに敵対的な摂動に対して脆弱である。
トレーニング中の強力な特徴表現学習は、元のモデルの堅牢性を大幅に向上させることができることを示す。
本稿では,多目的特徴表現学習手法であるMORELを提案する。
論文 参考訳(メタデータ) (2024-10-02T16:05:03Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
アドリラルロバスト性は、ニューラルネットワークをエンコードする難しい性質として伝統的に信じられてきた。
データを使わずに敵の堅牢性を実現するために,スケーラブルでモデルに依存しないソリューションを開発した。
論文 参考訳(メタデータ) (2024-07-26T10:49:14Z) - Sparse and Transferable Universal Singular Vectors Attack [5.498495800909073]
そこで本研究では, よりスムーズなホワイトボックス対逆攻撃を提案する。
我々のアプローチは、ジャコビアン行列の隠れた層の$(p,q)$-singularベクトルにスパーシティを提供するトラルキャットパワーに基づいている。
本研究は,攻撃をスパースする最先端モデルの脆弱性を実証し,堅牢な機械学習システムの開発の重要性を強調した。
論文 参考訳(メタデータ) (2024-01-25T09:21:29Z) - Towards Practical Control of Singular Values of Convolutional Layers [65.25070864775793]
畳み込みニューラルネットワーク(CNN)の訓練は容易であるが、一般化誤差や対向ロバスト性といった基本的な特性は制御が難しい。
最近の研究では、畳み込み層の特異値がそのような解像特性に顕著に影響を及ぼすことが示された。
我々は,レイヤ表現力の著しく低下を犠牲にして,先行技術の制約を緩和するための原則的アプローチを提供する。
論文 参考訳(メタデータ) (2022-11-24T19:09:44Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
現在のディープニューラルネットワーク(DNN)は、入力に対する敵の摂動が分類を変更したり操作したりする敵の攻撃に対して脆弱である。
このような攻撃を防御するために、敵の訓練(AT)として知られる効果的なアプローチが、堅牢な訓練を緩和するために示されている。
複数のマシンにまたがって実装された大規模バッチ対逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-13T15:39:43Z) - Efficient and Robust Classification for Sparse Attacks [34.48667992227529]
我々は、画像認識、自然言語処理、マルウェア検出の領域において効果的な攻撃として示されてきた$ell$-normで束縛された摂動を考える。
我々は,「トランケーション」と「アドリアル・トレーニング」を組み合わせた新しい防衛手法を提案する。
得られた洞察に触発され、これらのコンポーネントをニューラルネットワーク分類器に拡張する。
論文 参考訳(メタデータ) (2022-01-23T21:18:17Z) - KNN-BERT: Fine-Tuning Pre-Trained Models with KNN Classifier [61.063988689601416]
事前学習されたモデルは、クロスエントロピー損失によって最適化された線形分類器を用いて、微調整された下流タスクに広く利用されている。
これらの問題は、同じクラスの類似点と、予測を行う際の矛盾点に焦点を当てた表現を学習することで改善することができる。
本稿では、事前訓練されたモデル微調整タスクにおけるKNearest Neighborsについて紹介する。
論文 参考訳(メタデータ) (2021-10-06T06:17:05Z) - Combating Adversaries with Anti-Adversaries [118.70141983415445]
特に、我々の層は、逆の層とは反対の方向に入力摂動を生成します。
我々は,我々の階層と名目および頑健に訓練されたモデルを組み合わせることで,我々のアプローチの有効性を検証する。
我々の対向層は、クリーンな精度でコストを伴わずにモデルロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2021-03-26T09:36:59Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - A Tunable Robust Pruning Framework Through Dynamic Network Rewiring of
DNNs [8.597091257152567]
敵攻撃に対して頑健なプルーンドディープニューラルネットワーク(DNN)モデルを生成する動的ネットワークリウィリング(DNR)手法を提案する。
我々の実験により,DNRは,最先端の代替手段によって達成できるものよりも,クリーンで対角的な画像分類性能の圧縮モデルを一貫して見出すことができた。
論文 参考訳(メタデータ) (2020-11-03T19:49:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。