論文の概要: Combating Adversaries with Anti-Adversaries
- arxiv url: http://arxiv.org/abs/2103.14347v1
- Date: Fri, 26 Mar 2021 09:36:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-29 20:27:10.707753
- Title: Combating Adversaries with Anti-Adversaries
- Title(参考訳): 反敵と敵対するさま
- Authors: Motasem Alfarra, Juan C. P\'erez, Ali Thabet, Adel Bibi, Philip H. S.
Torr, Bernard Ghanem
- Abstract要約: 特に、我々の層は、逆の層とは反対の方向に入力摂動を生成します。
我々は,我々の階層と名目および頑健に訓練されたモデルを組み合わせることで,我々のアプローチの有効性を検証する。
我々の対向層は、クリーンな精度でコストを伴わずにモデルロバスト性を著しく向上させる。
- 参考スコア(独自算出の注目度): 118.70141983415445
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks are vulnerable to small input perturbations known as
adversarial attacks. Inspired by the fact that these adversaries are
constructed by iteratively minimizing the confidence of a network for the true
class label, we propose the anti-adversary layer, aimed at countering this
effect. In particular, our layer generates an input perturbation in the
opposite direction of the adversarial one, and feeds the classifier a perturbed
version of the input. Our approach is training-free and theoretically
supported. We verify the effectiveness of our approach by combining our layer
with both nominally and robustly trained models, and conduct large scale
experiments from black-box to adaptive attacks on CIFAR10, CIFAR100 and
ImageNet. Our anti-adversary layer significantly enhances model robustness
while coming at no cost on clean accuracy.
- Abstract(参考訳): ディープニューラルネットワークは、敵攻撃として知られる小さな入力摂動に弱い。
これらの敵は,真のクラスラベルに対するネットワークの信頼性を反復的に最小化することで構築されているという事実に着想を得て,この効果に対抗するための反敵層を提案する。
特に、我々の層は、逆の層と反対の方向に入力摂動を生成し、分類器に入力の摂動バージョンを供給します。
我々のアプローチはトレーニングフリーであり、理論的にサポートされている。
本手法の有効性を名目上およびロバストに訓練されたモデルと組み合わせることで検証し, ブラックボックスからcifar10, cifar100, imagenetへの適応攻撃まで大規模実験を行った。
我々の対向層は、クリーンな精度でコストをかけずにモデルロバスト性を著しく向上させる。
関連論文リスト
- Edge-Only Universal Adversarial Attacks in Distributed Learning [49.546479320670464]
本研究では,攻撃者がモデルのエッジ部分のみにアクセスした場合に,ユニバーサルな敵攻撃を発生させる可能性について検討する。
提案手法は, エッジ側の重要な特徴を活用することで, 未知のクラウド部分において, 効果的な誤予測を誘導できることを示唆する。
ImageNetの結果は、未知のクラウド部分に対する強力な攻撃伝達性を示している。
論文 参考訳(メタデータ) (2024-11-15T11:06:24Z) - Carefully Blending Adversarial Training and Purification Improves Adversarial Robustness [1.2289361708127877]
CARSOは、防御のために考案された適応的なエンドツーエンドのホワイトボックス攻撃から自身を守ることができる。
提案手法はCIFAR-10, CIFAR-100, TinyImageNet-200の最先端技術により改善されている。
論文 参考訳(メタデータ) (2023-05-25T09:04:31Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
対向ロバスト性の標準的な方法は、サンプルを最小に摂動させることによって作られたサンプルに対して防御する枠組みを仮定する。
距離学習を用いて、最適輸送問題として逆正則化をフレーム化する。
予備的な結果から, 変分摂動の規則化は, 変分防御と敏感防御の両方を改善することが示唆された。
論文 参考訳(メタデータ) (2022-11-04T13:54:02Z) - Robustness through Cognitive Dissociation Mitigation in Contrastive
Adversarial Training [2.538209532048867]
本稿では,新たなニューラルネットワークトレーニングフレームワークを提案する。
本稿では,データ拡張と対向的摂動の両面に一貫性のある特徴表現を学習することで,敵攻撃に対するモデルロバスト性を改善することを提案する。
我々は,CIFAR-10データセットを用いて,教師付きおよび自己教師付き対向学習法よりも頑健な精度とクリーンな精度を両立させる手法を検証する。
論文 参考訳(メタデータ) (2022-03-16T21:41:27Z) - Defensive Tensorization [113.96183766922393]
本稿では,ネットワークの遅延高次分解を利用した対角防御手法であるテンソル防御手法を提案する。
我々は,標準画像分類ベンチマークにおけるアプローチの有効性を実証的に実証した。
我々は,音声タスクとバイナリネットワークを考慮し,ドメイン間のアプローチと低精度アーキテクチャの汎用性を検証した。
論文 参考訳(メタデータ) (2021-10-26T17:00:16Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - Improving adversarial robustness of deep neural networks by using
semantic information [17.887586209038968]
対人訓練は、敵の堅牢性を改善するための主要な方法であり、対人攻撃に対する第一線である。
本稿では,ネットワーク全体から,あるクラスに対応する決定境界に近い領域の重要部分に焦点を移す,対向ロバスト性の問題に対する新たな視点を提供する。
MNISTとCIFAR-10データセットの実験的結果は、この手法がトレーニングデータから非常に小さなデータセットを使用しても、敵の堅牢性を大幅に向上することを示している。
論文 参考訳(メタデータ) (2020-08-18T10:23:57Z) - Stylized Adversarial Defense [105.88250594033053]
逆行訓練は摂動パターンを生成し、モデルを堅牢化するためのトレーニングセットにそれらを含む。
我々は、より強力な敵を作るために、機能空間から追加情報を活用することを提案する。
我々の対人訓練アプローチは、最先端の防御と比べて強い堅牢性を示している。
論文 参考訳(メタデータ) (2020-07-29T08:38:10Z) - Adversarial Feature Desensitization [12.401175943131268]
本稿では,ドメイン適応分野からの洞察を基盤とした,対向ロバスト性に対する新しいアプローチを提案する。
提案手法は,入力の逆方向の摂動に対して不変な特徴を学習することを目的として,AFD(Adversarial Feature Desensitization)と呼ばれる。
論文 参考訳(メタデータ) (2020-06-08T14:20:02Z) - Luring of transferable adversarial perturbations in the black-box
paradigm [0.0]
我々は、ブラックボックス転送攻撃に対するモデルの堅牢性を改善するための新しいアプローチを提案する。
除去可能な追加ニューラルネットワークが対象モデルに含まれており、テクスチャリング効果を誘導するように設計されている。
提案手法は,対象モデルの予測にのみアクセス可能であり,ラベル付きデータセットを必要としない。
論文 参考訳(メタデータ) (2020-04-10T06:48:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。