論文の概要: ImpNet: Imperceptible and blackbox-undetectable backdoors in compiled
neural networks
- arxiv url: http://arxiv.org/abs/2210.00108v3
- Date: Mon, 22 Jan 2024 11:51:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-23 22:23:21.214509
- Title: ImpNet: Imperceptible and blackbox-undetectable backdoors in compiled
neural networks
- Title(参考訳): impnet: コンパイル型ニューラルネットワークにおけるインセプタブルおよびブラックボックス検出不能バックドア
- Authors: Tim Clifford, Ilia Shumailov, Yiren Zhao, Ross Anderson, Robert
Mullins
- Abstract要約: データ準備およびモデルトレーニング段階における安全対策を回避するため,コンパイル中にバックドアを追加することができることを示す。
攻撃者は、コンパイル中に既存の重みベースのバックドアを挿入できるだけでなく、ImpNetのような新しい重みに依存しないバックドアも挿入できる。
ImpNetを含むいくつかのバックドアは、挿入され、他の場所で削除されるステージにおいてのみ確実に検出できるため、重大な課題となる。
- 参考スコア(独自算出の注目度): 18.337267366258818
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Early backdoor attacks against machine learning set off an arms race in
attack and defence development. Defences have since appeared demonstrating some
ability to detect backdoors in models or even remove them. These defences work
by inspecting the training data, the model, or the integrity of the training
procedure. In this work, we show that backdoors can be added during
compilation, circumventing any safeguards in the data preparation and model
training stages. The attacker can not only insert existing weight-based
backdoors during compilation, but also a new class of weight-independent
backdoors, such as ImpNet. These backdoors are impossible to detect during the
training or data preparation processes, because they are not yet present. Next,
we demonstrate that some backdoors, including ImpNet, can only be reliably
detected at the stage where they are inserted and removing them anywhere else
presents a significant challenge. We conclude that ML model security requires
assurance of provenance along the entire technical pipeline, including the
data, model architecture, compiler, and hardware specification.
- Abstract(参考訳): 機械学習に対する初期のバックドア攻撃は、攻撃と防衛開発で武器競争を開始した。
防衛隊はその後、モデル内のバックドアを検知したり、取り除いたりできる能力を示した。
これらの防御は、訓練手順の訓練データ、モデル、または整合性を検査することで機能する。
本研究では,データ準備とモデルトレーニングの段階でのセーフガードを回避して,コンパイル中にバックドアを追加できることを示す。
攻撃者は、コンパイル中に既存の重みベースのバックドアを挿入できるだけでなく、ImpNetのような新しい重みに依存しないバックドアも挿入できる。
これらのバックドアは、まだ存在していないため、トレーニングやデータ準備プロセス中に検出できない。
次に、ImpNetを含むいくつかのバックドアが、挿入され、他の場所で削除されるステージにおいてのみ確実に検出できることを示します。
我々は、MLモデルのセキュリティには、データ、モデルアーキテクチャ、コンパイラ、ハードウェア仕様を含む、技術パイプライン全体の保証が必要であると結論付けている。
関連論文リスト
- Expose Before You Defend: Unifying and Enhancing Backdoor Defenses via Exposed Models [68.40324627475499]
本稿では,Expose Before You Defendという新しい2段階防衛フレームワークを紹介する。
EBYDは既存のバックドア防御手法を総合防衛システムに統合し、性能を向上する。
2つの視覚データセットと4つの言語データセットにまたがる10のイメージアタックと6つのテキストアタックに関する広範な実験を行います。
論文 参考訳(メタデータ) (2024-10-25T09:36:04Z) - Exploiting the Vulnerability of Large Language Models via Defense-Aware Architectural Backdoor [0.24335447922683692]
基盤となるモデルアーキテクチャ内に隠蔽する新しいタイプのバックドアアタックを導入します。
モデルアーキテクチャレイヤのアドオンモジュールは、入力トリガトークンの存在を検出し、レイヤの重みを変更することができる。
我々は,5つの大言語データセットの2つのモデルアーキテクチャ設定を用いて,攻撃方法を評価するための広範囲な実験を行った。
論文 参考訳(メタデータ) (2024-09-03T14:54:16Z) - Flatness-aware Sequential Learning Generates Resilient Backdoors [7.969181278996343]
近年、バックドア攻撃は機械学習モデルのセキュリティに対する新たな脅威となっている。
本稿では,連続学習(CL)技術を活用して,バックドアのCFに対処する。
レジリエントなバックドアを生成可能な,SBL(Sequential Backdoor Learning)という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-20T03:30:05Z) - Mitigating Backdoor Attack by Injecting Proactive Defensive Backdoor [63.84477483795964]
データ中毒のバックドア攻撃は、機械学習モデルにとって深刻なセキュリティ上の脅威である。
本稿では,トレーニング中のバックドアディフェンスに着目し,データセットが有害になりうる場合でもクリーンなモデルをトレーニングすることを目的とした。
PDB(Proactive Defensive Backdoor)と呼ばれる新しい防衛手法を提案する。
論文 参考訳(メタデータ) (2024-05-25T07:52:26Z) - BackdoorBox: A Python Toolbox for Backdoor Learning [67.53987387581222]
このPythonツールボックスは、代表的で高度なバックドア攻撃と防御を実装している。
研究者や開発者は、ベンチマークやローカルデータセットで、さまざまなメソッドを簡単に実装し、比較することができる。
論文 参考訳(メタデータ) (2023-02-01T09:45:42Z) - Architectural Backdoors in Neural Networks [27.315196801989032]
モデルアーキテクチャの内部に隠れる新しい種類のバックドアアタックを導入します。
これらのバックドアの実装は簡単で、例えばバックドアモデルアーキテクチャ用のオープンソースコードを公開している。
私たちは、モデルアーキテクチャのバックドアが真の脅威であり、他のアプローチとは異なり、ゼロから完全な再トレーニングに耐えられることを実証しています。
論文 参考訳(メタデータ) (2022-06-15T22:44:03Z) - Anti-Backdoor Learning: Training Clean Models on Poisoned Data [17.648453598314795]
ディープニューラルネットワーク(DNN)に対するセキュリティ上の脅威としてバックドア攻撃が出現
提案手法は,バックドア・ポゾンデータを用いたアンファンクレーンモデルの学習を目的とした,アンファンティ・バックドア学習の概念を導入する。
バックドアポゾンデータ上でのABL学習モデルは、純粋にクリーンなデータでトレーニングされたのと同じ性能を実証的に示す。
論文 参考訳(メタデータ) (2021-10-22T03:30:48Z) - Check Your Other Door! Establishing Backdoor Attacks in the Frequency
Domain [80.24811082454367]
検出不能で強力なバックドア攻撃を確立するために周波数領域を利用する利点を示す。
また、周波数ベースのバックドア攻撃を成功させる2つの防御方法と、攻撃者がそれらを回避できる可能性を示す。
論文 参考訳(メタデータ) (2021-09-12T12:44:52Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
モデルへのクエリアクセスのみを用いてバックドア攻撃を同定するブラックボックスバックドア検出(B3D)手法を提案する。
バックドア検出に加えて,同定されたバックドアモデルを用いた信頼性の高い予測手法を提案する。
論文 参考訳(メタデータ) (2021-03-24T12:06:40Z) - Backdoor Learning: A Survey [75.59571756777342]
バックドア攻撃はディープニューラルネットワーク(DNN)に隠れたバックドアを埋め込む
バックドア学習は、急速に成長する研究分野である。
本稿では,この領域を包括的に調査する。
論文 参考訳(メタデータ) (2020-07-17T04:09:20Z) - Blind Backdoors in Deep Learning Models [22.844973592524966]
本稿では,機械学習モデルにバックドアを注入する新しい手法について検討する。
従来の文献よりも厳格に強力なバックドアの新たなクラスを実証するために使用しています。
攻撃者はトレーニングデータを変更したり、コードの実行を観察したり、結果のモデルにアクセスしたりすることができません。
論文 参考訳(メタデータ) (2020-05-08T02:15:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。