The Plant Pathology 2020 challenge dataset to classify foliar disease of
apples
- URL: http://arxiv.org/abs/2004.11958v1
- Date: Fri, 24 Apr 2020 19:36:37 GMT
- Title: The Plant Pathology 2020 challenge dataset to classify foliar disease of
apples
- Authors: Ranjita Thapa (1), Noah Snavely (2), Serge Belongie (2), Awais Khan
(1) ((1) Plant Pathology and Plant-Microbe Biology Section, Cornell
University, Geneva, NY, (2) Cornell Tech)
- Abstract summary: Apple orchards in the U.S. are under constant threat from a large number of pathogens and insects. Appropriate and timely deployment of disease management depends on early disease detection.
We have manually captured 3,651 high-quality, real-life symptom images of multiple apple foliar diseases.
A subset, expert-annotated to create a pilot dataset for apple scab, cedar apple rust, and healthy leaves, was made available to the Kaggle community for 'Plant Pathology Challenge'
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Apple orchards in the U.S. are under constant threat from a large number of
pathogens and insects. Appropriate and timely deployment of disease management
depends on early disease detection. Incorrect and delayed diagnosis can result
in either excessive or inadequate use of chemicals, with increased production
costs, environmental, and health impacts. We have manually captured 3,651
high-quality, real-life symptom images of multiple apple foliar diseases, with
variable illumination, angles, surfaces, and noise. A subset, expert-annotated
to create a pilot dataset for apple scab, cedar apple rust, and healthy leaves,
was made available to the Kaggle community for 'Plant Pathology Challenge';
part of the Fine-Grained Visual Categorization (FGVC) workshop at CVPR 2020
(Computer Vision and Pattern Recognition). We also trained an off-the-shelf
convolutional neural network (CNN) on this data for disease classification and
achieved 97% accuracy on a held-out test set. This dataset will contribute
towards development and deployment of machine learning-based automated plant
disease classification algorithms to ultimately realize fast and accurate
disease detection. We will continue to add images to the pilot dataset for a
larger, more comprehensive expert-annotated dataset for future Kaggle
competitions and to explore more advanced methods for disease classification
and quantification.
Related papers
- The PV-ALE Dataset: Enhancing Apple Leaf Disease Classification Through Transfer Learning with Convolutional Neural Networks [0.0]
We extend the widely used PlantVillage dataset with additional apple leaf disease classes.
Test F1 scores of 99.63% and 97.87% were obtained on the original and extended datasets.
arXiv Detail & Related papers (2024-10-29T19:30:22Z) - PND-Net: Plant Nutrition Deficiency and Disease Classification using Graph Convolutional Network [18.778641229886393]
This article proposes a new deep learning method for plant nutrition deficiencies and disease classification using a graph convolutional network (GNN)
The proposed method, called Plant Nutrition Deficiency and Disease Network (PND-Net), is evaluated on two public datasets for nutrition deficiency, and two for disease classification using four CNNs.
arXiv Detail & Related papers (2024-10-16T17:01:28Z) - How Does Pruning Impact Long-Tailed Multi-Label Medical Image
Classifiers? [49.35105290167996]
Pruning has emerged as a powerful technique for compressing deep neural networks, reducing memory usage and inference time without significantly affecting overall performance.
This work represents a first step toward understanding the impact of pruning on model behavior in deep long-tailed, multi-label medical image classification.
arXiv Detail & Related papers (2023-08-17T20:40:30Z) - An Ensemble of Convolutional Neural Networks to Detect Foliar Diseases
in Apple Plants [0.0]
Apple diseases, if not diagnosed early, can lead to massive resource loss and pose a serious threat to humans and animals who consume the infected apples.
Our work proposes an ensembled system of Xception, InceptionResNet, and MobileNet architectures to detect 5 different types of apple plant diseases.
The system has achieved outstanding results in multi-class and multi-label classification and can be used in a real-time setting to monitor large apple plantations.
arXiv Detail & Related papers (2022-10-01T15:40:04Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
glaucoma is challenging to detect since it remains asymptomatic until the symptoms are severe.
Early identification of glaucoma is generally made based on functional, structural, and clinical assessments.
Deep learning methods have partially solved this dilemma by bypassing the marker identification stage and analyzing high-level information directly to classify the data.
arXiv Detail & Related papers (2021-10-04T16:06:49Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Real-time Plant Health Assessment Via Implementing Cloud-based Scalable
Transfer Learning On AWS DeepLens [0.8714677279673736]
We propose a machine learning approach to detect and classify plant leaf disease.
We use scalable transfer learning on AWS SageMaker and importing it on AWS DeepLens for real-time practical usability.
Our experiments on extensive image data set of healthy and unhealthy leaves of fruits and vegetables showed an accuracy of 98.78% with a real-time diagnosis of plant leaves diseases.
arXiv Detail & Related papers (2020-09-09T05:23:34Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Deep Learning for Apple Diseases: Classification and Identification [0.5735035463793008]
Disease and pests cause huge economic loss to the apple industry every year.
In this study, we propose a deep learning based approach for identification and classification of apple diseases.
arXiv Detail & Related papers (2020-07-06T18:08:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.