MALM: Mixing Augmented Language Modeling for Zero-Shot Machine
Translation
- URL: http://arxiv.org/abs/2210.00320v1
- Date: Sat, 1 Oct 2022 17:01:30 GMT
- Title: MALM: Mixing Augmented Language Modeling for Zero-Shot Machine
Translation
- Authors: Kshitij Gupta
- Abstract summary: Large pre-trained language models have brought remarkable progress in NLP.
We empirically demonstrate the effectiveness of self-supervised pre-training and data augmentation for zero-shot multi-lingual machine translation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large pre-trained language models have brought remarkable progress in NLP.
Pre-training and Fine-tuning have given state-of-art performance across tasks
in text processing. Data Augmentation techniques have also helped build
state-of-art models on low or zero resource tasks. Many works in the past have
attempted at learning a single massively-multilingual machine translation model
for zero-shot translation. Although those translation models are producing
correct translations, the main challenge is those models are producing the
wrong languages for zero-shot translation. This work and its results indicate
that prompt conditioned large models do not suffer from off-target language
errors i.e. errors arising due to translation to wrong languages. We
empirically demonstrate the effectiveness of self-supervised pre-training and
data augmentation for zero-shot multi-lingual machine translation.
Related papers
- Improving Language Models Trained on Translated Data with Continual Pre-Training and Dictionary Learning Analysis [3.16714407449467]
We investigate the role of translation and synthetic data in training language models.
We translate TinyStories, a dataset of 2.2M short stories for 3-4 year old children, from English to Arabic using the open NLLB-3B MT model.
To rectify these issues, we pre-train the models with a small dataset of synthesized high-quality Arabic stories.
arXiv Detail & Related papers (2024-05-23T07:53:04Z) - Contextual Code Switching for Machine Translation using Language Models [1.4866655830571935]
Large language models (LLMs) have exerted a considerable impact on diverse language-related tasks in recent years.
We present an extensive study on the code switching task specifically for the machine translation task comparing multiple LLMs.
Our results indicate that despite the LLMs having promising results in the certain tasks, the models with relatively lesser complexity outperform the multilingual large language models in the machine translation task.
arXiv Detail & Related papers (2023-12-20T16:40:33Z) - Exploring Linguistic Similarity and Zero-Shot Learning for Multilingual
Translation of Dravidian Languages [0.34998703934432673]
We build a single-decoder neural machine translation system for Dravidian-Dravidian multilingual translation.
Our model achieves scores within 3 BLEU of large-scale pivot-based models when it is trained on 50% of the language directions.
arXiv Detail & Related papers (2023-08-10T13:38:09Z) - Improving Language Model Integration for Neural Machine Translation [43.85486035238116]
We show that accounting for the implicit language model significantly boosts the performance of language model fusion.
We find that accounting for the implicit language model significantly boosts the performance of language model fusion.
arXiv Detail & Related papers (2023-06-08T10:00:19Z) - Improving Multilingual Translation by Representation and Gradient
Regularization [82.42760103045083]
We propose a joint approach to regularize NMT models at both representation-level and gradient-level.
Our results demonstrate that our approach is highly effective in both reducing off-target translation occurrences and improving zero-shot translation performance.
arXiv Detail & Related papers (2021-09-10T10:52:21Z) - Bilingual Alignment Pre-training for Zero-shot Cross-lingual Transfer [33.680292990007366]
In this paper, we aim to improve the zero-shot cross-lingual transfer performance by aligning the embeddings better.
We propose a pre-training task named Alignment Language Model (AlignLM) which uses the statistical alignment information as the prior knowledge to guide bilingual word prediction.
The results show AlignLM can improve the zero-shot performance significantly on MLQA and XNLI datasets.
arXiv Detail & Related papers (2021-06-03T10:18:43Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
Cross-lingual Machine Reading (CLMRC) remains a challenging problem due to the lack of large-scale datasets in low-source languages.
We propose a novel augmentation approach named Language Branch Machine Reading (LBMRC)
LBMRC trains multiple machine reading comprehension (MRC) models proficient in individual language.
We devise a multilingual distillation approach to amalgamate knowledge from multiple language branch models to a single model for all target languages.
arXiv Detail & Related papers (2020-10-27T13:12:17Z) - Beyond English-Centric Multilingual Machine Translation [74.21727842163068]
We create a true Many-to-Many multilingual translation model that can translate directly between any pair of 100 languages.
We build and open source a training dataset that covers thousands of language directions with supervised data, created through large-scale mining.
Our focus on non-English-Centric models brings gains of more than 10 BLEU when directly translating between non-English directions while performing competitively to the best single systems of WMT.
arXiv Detail & Related papers (2020-10-21T17:01:23Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
Spelling normalization for low resource languages is a challenging task because the patterns are hard to predict.
This work shows a comparison of a neural model and character language models with varying amounts on target language data.
Our usage scenario is interactive correction with nearly zero amounts of training examples, improving models as more data is collected.
arXiv Detail & Related papers (2020-10-20T17:31:07Z) - Reusing a Pretrained Language Model on Languages with Limited Corpora
for Unsupervised NMT [129.99918589405675]
We present an effective approach that reuses an LM that is pretrained only on the high-resource language.
The monolingual LM is fine-tuned on both languages and is then used to initialize a UNMT model.
Our approach, RE-LM, outperforms a competitive cross-lingual pretraining model (XLM) in English-Macedonian (En-Mk) and English-Albanian (En-Sq)
arXiv Detail & Related papers (2020-09-16T11:37:10Z) - Improving Massively Multilingual Neural Machine Translation and
Zero-Shot Translation [81.7786241489002]
Massively multilingual models for neural machine translation (NMT) are theoretically attractive, but often underperform bilingual models and deliver poor zero-shot translations.
We argue that multilingual NMT requires stronger modeling capacity to support language pairs with varying typological characteristics.
We propose random online backtranslation to enforce the translation of unseen training language pairs.
arXiv Detail & Related papers (2020-04-24T17:21:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.