Social and environmental impact of recent developments in machine
learning on biology and chemistry research
- URL: http://arxiv.org/abs/2210.00356v1
- Date: Sat, 1 Oct 2022 20:29:01 GMT
- Title: Social and environmental impact of recent developments in machine
learning on biology and chemistry research
- Authors: Daniel Probst
- Abstract summary: Recent developments in machine learning can potentially affect basic and applied research.
These developments can potentially affect basic and applied research, such as drug discovery and development.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Potential societal and environmental effects such as the rapidly increasing
resource use and the associated environmental impact, reproducibility issues,
and exclusivity, the privatization of ML research leading to a public research
brain-drain, a narrowing of the research effort caused by a focus on deep
learning, and the introduction of biases through a lack of sociodemographic
diversity in data and personnel caused by recent developments in machine
learning are a current topic of discussion and scientific publications.
However, these discussions and publications focus mainly on computer
science-adjacent fields, including computer vision and natural language
processing or basic ML research. Using bibliometric analysis of the complete
and full-text analysis of the open-access literature, we show that the same
observations can be made for applied machine learning in chemistry and biology.
These developments can potentially affect basic and applied research, such as
drug discovery and development, beyond the known issue of biased data sets.
Related papers
- Intervention strategies for misinformation sharing on social media: A bibliometric analysis [1.8020166013859684]
Inaccurate shared information causes confusion, can adversely affect mental health, and can lead to mis-informed decision-making.
This study explores the typology of intervention strategies for addressing misinformation sharing on social media.
It identifies 4 important clusters - cognition-based, automated-based, information-based, and hybrid-based.
arXiv Detail & Related papers (2024-09-26T08:38:15Z) - Classical Machine Learning: Seventy Years of Algorithmic Learning Evolution [1.121816400852218]
Machine learning (ML) has transformed numerous fields, but understanding its foundational research is crucial for its continued progress.
This paper presents an overview of the significant classical ML algorithms and examines the state-of-the-art publications spanning twelve decades.
We analyzed a dataset of highly cited papers from prominent ML conferences and journals, employing citation and keyword analyses to uncover critical insights.
arXiv Detail & Related papers (2024-08-03T11:07:10Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - A Comprehensive Study of Groundbreaking Machine Learning Research:
Analyzing highly cited and impactful publications across six decades [1.6442870218029522]
Machine learning (ML) has emerged as a prominent field of research in computer science and other related fields.
It is crucial to understand the landscape of highly cited publications to identify key trends, influential authors, and significant contributions made thus far.
arXiv Detail & Related papers (2023-08-01T21:43:22Z) - Identifying Causal Influences on Publication Trends and Behavior: A Case
Study of the Computational Linguistics Community [10.791197825505755]
We present mixed-method analyses to investigate causal influences of publication trends and behavior.
Key findings highlight the transition to rapidly emerging methodologies in the research community.
We anticipate this work to provide useful insights about publication trends and behavior.
arXiv Detail & Related papers (2021-10-15T08:36:13Z) - Machine Learning Applications for Therapeutic Tasks with Genomics Data [49.98249191161107]
We review the literature on machine learning applications for genomics through the lens of therapeutic development.
We identify twenty-two machine learning in genomics applications across the entire therapeutics pipeline.
We pinpoint seven important challenges in this field with opportunities for expansion and impact.
arXiv Detail & Related papers (2021-05-03T21:20:20Z) - Affect Analysis in-the-wild: Valence-Arousal, Expressions, Action Units
and a Unified Framework [83.21732533130846]
The paper focuses on large in-the-wild databases, i.e., Aff-Wild and Aff-Wild2.
It presents the design of two classes of deep neural networks trained with these databases.
A novel multi-task and holistic framework is presented which is able to jointly learn and effectively generalize and perform affect recognition.
arXiv Detail & Related papers (2021-03-29T17:36:20Z) - Semantic and Relational Spaces in Science of Science: Deep Learning
Models for Article Vectorisation [4.178929174617172]
We focus on document-level embeddings based on the semantic and relational aspects of articles, using Natural Language Processing (NLP) and Graph Neural Networks (GNNs)
Our results show that using NLP we can encode a semantic space of articles, while with GNN we are able to build a relational space where the social practices of a research community are also encoded.
arXiv Detail & Related papers (2020-11-05T14:57:41Z) - Extracting a Knowledge Base of Mechanisms from COVID-19 Papers [50.17242035034729]
We pursue the construction of a knowledge base (KB) of mechanisms.
We develop a broad, unified schema that strikes a balance between relevance and breadth.
Experiments demonstrate the utility of our KB in supporting interdisciplinary scientific search over COVID-19 literature.
arXiv Detail & Related papers (2020-10-08T07:54:14Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.