Perturbation theory with quantum signal processing
- URL: http://arxiv.org/abs/2210.00718v3
- Date: Wed, 10 May 2023 07:52:16 GMT
- Title: Perturbation theory with quantum signal processing
- Authors: Kosuke Mitarai, Kiichiro Toyoizumi, Wataru Mizukami
- Abstract summary: We provide a quantum algorithm to obtain perturbative energies on quantum computers.
The proposed algorithm uses quantum signal processing (QSP) to achieve this goal.
This work is a first step towards explainable'' quantum simulation on fault-tolerant quantum computers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Perturbation theory is an important technique for reducing computational cost
and providing physical insights in simulating quantum systems with classical
computers. Here, we provide a quantum algorithm to obtain perturbative energies
on quantum computers. The benefit of using quantum computers is that we can
start the perturbation from a Hamiltonian that is classically hard to solve.
The proposed algorithm uses quantum signal processing (QSP) to achieve this
goal. Along with the perturbation theory, we construct a technique for ground
state preparation with detailed computational cost analysis, which can be of
independent interest. We also estimate a rough computational cost of the
algorithm for simple chemical systems such as water clusters and polyacene
molecules. To the best of our knowledge, this is the first of such estimates
for practical applications of QSP. Unfortunately, we find that the proposed
algorithm, at least in its current form, does not exhibit practical numbers
despite of the efficiency of QSP compared to conventional quantum algorithms.
However, perturbation theory itself is an attractive direction to explore
because of its physical interpretability; it provides us insights about what
interaction gives an important contribution to the properties of systems. This
is in sharp contrast to the conventional approaches based on the quantum phase
estimation algorithm, where we can only obtain values of energy. From this
aspect, this work is a first step towards ``explainable'' quantum simulation on
fault-tolerant quantum computers.
Related papers
- Electronic Structure Calculations using Quantum Computing [0.0]
We present a hybrid Classical-Quantum computational procedure that uses the Variational Quantum Eigensolver (VQE) algorithm.
Our algorithm offers a streamlined process requiring fewer computational resources than classical methods.
Results indicate the potential of the algorithm to expedite the development of new materials and technologies.
arXiv Detail & Related papers (2023-05-13T12:02:05Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Quantum Computing Quantum Monte Carlo [8.69884453265578]
We propose a hybrid quantum-classical algorithm that integrates quantum computing and quantum Monte Carlo.
Our work paves the way to solving practical problems with intermediatescale and early-fault tolerant quantum computers.
arXiv Detail & Related papers (2022-06-21T14:26:24Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Density functionals and Kohn-Sham potentials with minimal wavefunction
preparations on a quantum computer [0.0]
One of the potential applications of a quantum computer is solving quantum chemical systems.
We demonstrate a method for obtaining the exact functional as a machine learned model from a sufficiently powerful quantum computer.
arXiv Detail & Related papers (2020-08-12T22:50:39Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z) - Quantum Solver of Contracted Eigenvalue Equations for Scalable Molecular
Simulations on Quantum Computing Devices [0.0]
We introduce a quantum solver of contracted eigenvalue equations, the quantum analogue of classical methods for the energies.
We demonstrate the algorithm though computations on both a quantum simulator and two IBM quantum processing units.
arXiv Detail & Related papers (2020-04-23T18:35:26Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
We combine the so-called seniority-zero, or paired-electron, approximation of computational quantum chemistry with techniques for simulating molecular chemistry on gate-based quantum computers.
We show that using the freed-up quantum resources for increasing the basis set can lead to more accurate results and reductions in the necessary number of quantum computing runs.
arXiv Detail & Related papers (2020-01-31T19:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.