Limitations of neural network training due to numerical instability of
backpropagation
- URL: http://arxiv.org/abs/2210.00805v4
- Date: Wed, 15 Nov 2023 18:56:59 GMT
- Title: Limitations of neural network training due to numerical instability of
backpropagation
- Authors: Clemens Karner, Vladimir Kazeev, Philipp Christian Petersen
- Abstract summary: We study the training of deep neural networks by gradient descent where floating-point arithmetic is used to compute gradients.
It is highly unlikely to find ReLU neural networks that maintain, in the course of training with gradient descent, superlinearly many affine pieces with respect to their number of layers.
We conclude that approximating sequences of ReLU neural networks resulting from gradient descent in practice differ substantially from theoretically constructed sequences.
- Score: 2.255961793913651
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the training of deep neural networks by gradient descent where
floating-point arithmetic is used to compute the gradients. In this framework
and under realistic assumptions, we demonstrate that it is highly unlikely to
find ReLU neural networks that maintain, in the course of training with
gradient descent, superlinearly many affine pieces with respect to their number
of layers. In virtually all approximation theoretical arguments that yield
high-order polynomial rates of approximation, sequences of ReLU neural networks
with exponentially many affine pieces compared to their numbers of layers are
used. As a consequence, we conclude that approximating sequences of ReLU neural
networks resulting from gradient descent in practice differ substantially from
theoretically constructed sequences. The assumptions and the theoretical
results are compared to a numerical study, which yields concurring results.
Related papers
- Convergence Analysis for Learning Orthonormal Deep Linear Neural
Networks [27.29463801531576]
We provide convergence analysis for training orthonormal deep linear neural networks.
Our results shed light on how increasing the number of hidden layers can impact the convergence speed.
arXiv Detail & Related papers (2023-11-24T18:46:54Z) - Implicit Bias of Gradient Descent for Two-layer ReLU and Leaky ReLU
Networks on Nearly-orthogonal Data [66.1211659120882]
The implicit bias towards solutions with favorable properties is believed to be a key reason why neural networks trained by gradient-based optimization can generalize well.
While the implicit bias of gradient flow has been widely studied for homogeneous neural networks (including ReLU and leaky ReLU networks), the implicit bias of gradient descent is currently only understood for smooth neural networks.
arXiv Detail & Related papers (2023-10-29T08:47:48Z) - Implicit regularization of deep residual networks towards neural ODEs [8.075122862553359]
We establish an implicit regularization of deep residual networks towards neural ODEs.
We prove that if the network is as a discretization of a neural ODE, then such a discretization holds throughout training.
arXiv Detail & Related papers (2023-09-03T16:35:59Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Theoretical Characterization of How Neural Network Pruning Affects its
Generalization [131.1347309639727]
This work makes the first attempt to study how different pruning fractions affect the model's gradient descent dynamics and generalization.
It is shown that as long as the pruning fraction is below a certain threshold, gradient descent can drive the training loss toward zero.
More surprisingly, the generalization bound gets better as the pruning fraction gets larger.
arXiv Detail & Related papers (2023-01-01T03:10:45Z) - Implicit Bias in Leaky ReLU Networks Trained on High-Dimensional Data [63.34506218832164]
In this work, we investigate the implicit bias of gradient flow and gradient descent in two-layer fully-connected neural networks with ReLU activations.
For gradient flow, we leverage recent work on the implicit bias for homogeneous neural networks to show that leakyally, gradient flow produces a neural network with rank at most two.
For gradient descent, provided the random variance is small enough, we show that a single step of gradient descent suffices to drastically reduce the rank of the network, and that the rank remains small throughout training.
arXiv Detail & Related papers (2022-10-13T15:09:54Z) - Optimization-Based Separations for Neural Networks [57.875347246373956]
We show that gradient descent can efficiently learn ball indicator functions using a depth 2 neural network with two layers of sigmoidal activations.
This is the first optimization-based separation result where the approximation benefits of the stronger architecture provably manifest in practice.
arXiv Detail & Related papers (2021-12-04T18:07:47Z) - Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks [83.58049517083138]
We consider a two-layer ReLU network trained via gradient descent.
We show that SGD is biased towards a simple solution.
We also provide empirical evidence that knots at locations distinct from the data points might occur.
arXiv Detail & Related papers (2021-11-03T15:14:20Z) - A global convergence theory for deep ReLU implicit networks via
over-parameterization [26.19122384935622]
Implicit deep learning has received increasing attention recently.
This paper analyzes the gradient flow of Rectified Linear Unit (ReLU) activated implicit neural networks.
arXiv Detail & Related papers (2021-10-11T23:22:50Z) - Convergence rates for gradient descent in the training of
overparameterized artificial neural networks with biases [3.198144010381572]
In recent years, artificial neural networks have developed into a powerful tool for dealing with a multitude of problems for which classical solution approaches.
It is still unclear why randomly gradient descent algorithms reach their limits.
arXiv Detail & Related papers (2021-02-23T18:17:47Z) - Towards a mathematical framework to inform Neural Network modelling via
Polynomial Regression [0.0]
It is shown that almost identical predictions can be made when certain conditions are met locally.
When learning from generated data, the proposed method producess that approximate correctly the data locally.
arXiv Detail & Related papers (2021-02-07T17:56:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.