Device-independent uncloneable encryption
- URL: http://arxiv.org/abs/2210.01058v3
- Date: Sun, 8 Oct 2023 20:37:11 GMT
- Title: Device-independent uncloneable encryption
- Authors: Srijita Kundu and Ernest Y.-Z. Tan
- Abstract summary: We introduce a variant of uncloneable encryption in which several possible decryption keys can decrypt a particular encryption.
We show that this variant of uncloneable encryption can be achieved device-independently.
We show that a simple modification of our scheme yields a single-decryptor encryption scheme.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Uncloneable encryption, first introduced by Broadbent and Lord (TQC 2020) is
a quantum encryption scheme in which a quantum ciphertext cannot be distributed
between two non-communicating parties such that, given access to the decryption
key, both parties cannot learn the underlying plaintext. In this work, we
introduce a variant of uncloneable encryption in which several possible
decryption keys can decrypt a particular encryption, and the security
requirement is that two parties who receive independently generated decryption
keys cannot both learn the underlying ciphertext. We show that this variant of
uncloneable encryption can be achieved device-independently, i.e., without
trusting the quantum states and measurements used in the scheme, and that this
variant works just as well as the original definition in constructing quantum
money. Moreover, we show that a simple modification of our scheme yields a
single-decryptor encryption scheme, which was a related notion introduced by
Georgiou and Zhandry. In particular, the resulting single-decryptor encryption
scheme achieves device-independent security with respect to a standard
definition of security against random plaintexts. Finally, we derive an
"extractor" result for a two-adversary scenario, which in particular yields a
single-decryptor encryption scheme for single bit-messages that achieves
perfect anti-piracy security without needing the quantum random oracle model.
Related papers
- Relating Quantum Tamper-Evident Encryption to Other Cryptographic Notions [0.0]
A quantum tamper-evident encryption scheme is a non-interactive symmetric-key encryption scheme mapping classical messages to quantum ciphertexts.
This quantum cryptographic primitive was first introduced by Gottesman in 2003.
We further our understanding of tamper-evident encryption by formally relating it to other cryptographic primitives in an information-theoretic setting.
arXiv Detail & Related papers (2024-11-05T02:20:29Z) - Revocable Encryption, Programs, and More: The Case of Multi-Copy Security [48.53070281993869]
We show the feasibility of revocable primitives, such as revocable encryption and revocable programs.
This suggests that the stronger notion of multi-copy security is within reach in unclonable cryptography.
arXiv Detail & Related papers (2024-10-17T02:37:40Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC)
We show that NU-HUNCC is information-theoretic individually secured against an eavesdropper with access to any subset of the links.
arXiv Detail & Related papers (2024-02-13T12:12:39Z) - Exact Homomorphic Encryption [0.0]
This article proposes a framework dubbed Exact Homomorphic Encryption, EHE, enabling exact computations on encrypted data without the need for pre-decryption.
Two fundamental traits of quantum gates, invertibility and the noncommutativity, establish the success of EHE.
arXiv Detail & Related papers (2024-01-17T07:48:52Z) - Publicly-Verifiable Deletion via Target-Collapsing Functions [81.13800728941818]
We show that targetcollapsing enables publiclyverifiable deletion (PVD)
We build on this framework to obtain a variety of primitives supporting publiclyverifiable deletion from weak cryptographic assumptions.
arXiv Detail & Related papers (2023-03-15T15:00:20Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - On the Feasibility of Unclonable Encryption, and More [16.64327673223307]
We show that encryption schemes satisfying unclonable indistinguishability exist unconditionally in the quantum random oracle model.
We also establish the feasibility of copy-protection for single-bit output point functions.
arXiv Detail & Related papers (2022-07-14T01:03:56Z) - Privacy and correctness trade-offs for information-theoretically secure
quantum homomorphic encryption [19.014535120129345]
Quantum homomorphic encryption allows computation by a server directly on encrypted data.
For such constructions to be possible, quantum homomorphic encryption must satisfy two privacy properties.
Our work unravels fundamental trade-offs between circuit privacy, data privacy and correctness for a broad family of quantum homomorphic encryption protocols.
arXiv Detail & Related papers (2022-05-24T15:02:34Z) - Uncloneable Decryptors from Quantum Copy-Protection [0.38073142980733]
We show that CPA secure uncloneable bit decryptors could be instantiated from a copy protection scheme.
We then show how to strengthen the CPA security of uncloneable decryptors to CCA2 security using strong EUF-CMA secure digital signatures.
arXiv Detail & Related papers (2022-03-11T11:47:04Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
We construct the first fully homomorphic encryption scheme with certified deletion.
Our main technical ingredient is an interactive protocol by which a quantum prover can convince a classical verifier that a sample from the Learning with Errors distribution in the form of a quantum state was deleted.
arXiv Detail & Related papers (2022-03-03T10:07:32Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.