論文の概要: Learning over time using a neuromorphic adaptive control algorithm for
robotic arms
- arxiv url: http://arxiv.org/abs/2210.01243v1
- Date: Mon, 3 Oct 2022 21:48:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 15:16:56.630438
- Title: Learning over time using a neuromorphic adaptive control algorithm for
robotic arms
- Title(参考訳): ロボットアームのためのニューロモルフィック適応制御アルゴリズムによる時間経過学習
- Authors: Lazar Supic and Terrence C. Stewart
- Abstract要約: ロボットアームは操作空間を学習し、時間とともにタスクを完了できることが示される。
また、SNNに基づく適応型ロボット制御アルゴリズムは、エネルギー効率を維持しつつ、迅速な応答を可能にすることを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we explore the ability of a robot arm to learn the underlying
operation space defined by the positions (x, y, z) that the arm's end-effector
can reach, including disturbances, by deploying and thoroughly evaluating a
Spiking Neural Network SNN-based adaptive control algorithm. While traditional
control algorithms for robotics have limitations in both adapting to new and
dynamic environments, we show that the robot arm can learn the operational
space and complete tasks faster over time. We also demonstrate that the
adaptive robot control algorithm based on SNNs enables a fast response while
maintaining energy efficiency. We obtained these results by performing an
extensive search of the adaptive algorithm parameter space, and evaluating
algorithm performance for different SNN network sizes, learning rates, dynamic
robot arm trajectories, and response times. We show that the robot arm learns
to complete tasks 15% faster in specific experiment scenarios such as scenarios
with six or nine random target points.
- Abstract(参考訳): 本稿では,スパイクニューラルネットワークsnsに基づく適応制御アルゴリズムをデプロイ・徹底評価することにより,ロボットアームが,アームのエンドエフェクタが外乱を含む到達可能な位置(x,y,z)で定義された動作空間を学習する能力について検討する。
ロボット工学の従来の制御アルゴリズムは、新しい環境や動的環境への適応に制限があるが、ロボットアームが操作空間を学習し、時間とともにタスクを完了できることを示す。
また,snsに基づく適応型ロボット制御アルゴリズムは,エネルギー効率を維持しつつ高速な応答を実現することを実証する。
適応アルゴリズムパラメータ空間を広範囲に探索し、異なるSNNネットワークサイズ、学習率、動的ロボットアーム軌道、応答時間に対するアルゴリズム性能を評価することにより、これらの結果を得た。
ロボットアームは、6つまたは9つのランダムな目標点を持つシナリオのような特定の実験シナリオにおいて15%高速にタスクを完了できることを示す。
関連論文リスト
- Towards Agile Robots: Intuitive Robot Position Speculation with Neural
Networks [4.193801074793624]
本稿では,移動マニピュレータの俊敏性向上を目的とした学習に基づくロボット位置推定ネットワーク(RPSN)を提案する。
RPSNには、微分可能な逆運動アルゴリズムとニューラルネットワークが組み込まれており、エンドツーエンドのトレーニングを通じて、RPSNは高い成功率で位置を推測することができる。
論文 参考訳(メタデータ) (2024-02-26T03:54:32Z) - LPAC: Learnable Perception-Action-Communication Loops with Applications
to Coverage Control [80.86089324742024]
本稿では,その問題に対する学習可能なパーセプション・アクション・コミュニケーション(LPAC)アーキテクチャを提案する。
CNNは局所認識を処理する。グラフニューラルネットワーク(GNN)はロボットのコミュニケーションを促進する。
評価の結果,LPACモデルは標準分散型および集中型カバレッジ制御アルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2024-01-10T00:08:00Z) - Mission-driven Exploration for Accelerated Deep Reinforcement Learning
with Temporal Logic Task Specifications [11.812602599752294]
未知の構造を持つ環境で動作している未知のダイナミクスを持つロボットについて考察する。
我々の目標は、オートマトン符号化されたタスクを満足する確率を最大化する制御ポリシーを合成することである。
そこで本研究では,制御ポリシーを類似手法と比較して顕著に高速に学習できるDRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-11-28T18:59:58Z) - Comparing Active Learning Performance Driven by Gaussian Processes or
Bayesian Neural Networks for Constrained Trajectory Exploration [0.0]
現在、人間は科学的な目的を達成するためにロボットを駆動しているが、ロボットの位置によっては、情報交換と駆動コマンドがミッション遂行に不適切な遅延を引き起こす可能性がある。
科学的目的と探索戦略で符号化された自律ロボットは、通信遅延を発生させず、ミッションをより迅速に達成することができる。
能動学習アルゴリズムは知的探索の能力を提供するが、その基盤となるモデル構造は、環境の理解を正確に形成する際に、能動学習アルゴリズムの性能を変化させる。
論文 参考訳(メタデータ) (2023-09-28T02:45:14Z) - Bridging Active Exploration and Uncertainty-Aware Deployment Using
Probabilistic Ensemble Neural Network Dynamics [11.946807588018595]
本稿では,活発な探索と不確実性を考慮した展開を橋渡しするモデルベース強化学習フレームワークを提案する。
探索と展開の対立する2つのタスクは、最先端のサンプリングベースのMPCによって最適化されている。
自動運転車と車輪付きロボットの両方で実験を行い、探索と展開の両方に有望な結果を示します。
論文 参考訳(メタデータ) (2023-05-20T17:20:12Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
ニューラルジェネレーティブ・コーディング(NGC)の神経認知計算フレームワークによるロボット制御へのバックプロパゲーションフリーアプローチを提案する。
我々は、スパース報酬から動的オンライン学習を容易にする強力な予測符号化/処理回路から完全に構築されたエージェントを設計する。
提案するActPCエージェントは,スパース(外部)報酬信号に対して良好に動作し,複数の強力なバックプロップベースのRLアプローチと競合し,性能が優れていることを示す。
論文 参考訳(メタデータ) (2022-09-19T16:49:32Z) - High-Speed Accurate Robot Control using Learned Forward Kinodynamics and
Non-linear Least Squares Optimization [42.92648945058518]
ロボットの動きのキノダイナミックな相互作用への依存は、高速でより顕著になる。
従来の研究から,逆キノダイナミックモデルの学習がロボットの高速制御に有効であることが示唆された。
本稿では,FKDモデルと非線形最小二乗最適化を併用した,高精度かつ高速なロボット制御のための新しい定式化を提案する。
論文 参考訳(メタデータ) (2022-06-16T23:52:01Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
オペレーショナル・スペース・コントロール(OSC)は、操作のための効果的なタスクスペース・コントローラとして使われてきた。
本稿では,データ駆動型OSCのモデル誤差を補償するOSC for Adaptation and Robustness (OSCAR)を提案する。
本手法は,様々なシミュレーション操作問題に対して評価し,制御器のベースラインの配列よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2021-10-02T01:21:38Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - Graph Neural Networks for Decentralized Multi-Robot Submodular Action
Selection [101.38634057635373]
ロボットがチームサブモジュールの目的を最大化するために共同で行動を選択する必要があるアプリケーションに焦点を当てる。
分散通信によるサブモジュール化に向けた汎用学習アーキテクチャを提案する。
大規模ロボットネットワークによるアクティブターゲットカバレッジのシナリオにおいて、GNNベースの学習アプローチのパフォーマンスを実証します。
論文 参考訳(メタデータ) (2021-05-18T15:32:07Z) - Neural Dynamic Policies for End-to-End Sensorimotor Learning [51.24542903398335]
感覚運動制御における現在の主流パラダイムは、模倣であれ強化学習であれ、生の行動空間で政策を直接訓練することである。
軌道分布空間の予測を行うニューラル・ダイナミック・ポリシー(NDP)を提案する。
NDPは、いくつかのロボット制御タスクにおいて、効率と性能の両面で、これまでの最先端よりも優れている。
論文 参考訳(メタデータ) (2020-12-04T18:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。