Enriching Vulnerability Reports Through Automated and Augmented
Description Summarization
- URL: http://arxiv.org/abs/2210.01260v1
- Date: Mon, 3 Oct 2022 22:46:35 GMT
- Title: Enriching Vulnerability Reports Through Automated and Augmented
Description Summarization
- Authors: Hattan Althebeiti and David Mohaisen
- Abstract summary: Vulnerability descriptions play an important role in communicating the vulnerability information to security analysts.
This paper devises a pipeline to augment vulnerability description through third party reference (hyperlink) scrapping.
- Score: 6.3455238301221675
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Security incidents and data breaches are increasing rapidly, and only a
fraction of them is being reported. Public vulnerability databases, e.g.,
national vulnerability database (NVD) and common vulnerability and exposure
(CVE), have been leading the effort in documenting vulnerabilities and sharing
them to aid defenses. Both are known for many issues, including brief
vulnerability descriptions. Those descriptions play an important role in
communicating the vulnerability information to security analysts in order to
develop the appropriate countermeasure. Many resources provide additional
information about vulnerabilities, however, they are not utilized to boost
public repositories. In this paper, we devise a pipeline to augment
vulnerability description through third party reference (hyperlink) scrapping.
To normalize the description, we build a natural language summarization
pipeline utilizing a pretrained language model that is fine-tuned using labeled
instances and evaluate its performance against both human evaluation (golden
standard) and computational metrics, showing initial promising results in terms
of summary fluency, completeness, correctness, and understanding.
Related papers
- Learning Graph-based Patch Representations for Identifying and Assessing Silent Vulnerability Fixes [5.983725940750908]
Software projects are dependent on many third-party libraries, therefore high-risk vulnerabilities can propagate through the dependency chain to downstream projects.
Silent vulnerability fixes cause downstream software to be unaware of urgent security issues in a timely manner, posing a security risk to the software.
We propose GRAPE, a GRAph-based Patch rEpresentation that aims to provide a unified framework for getting vulnerability fix patches representation.
arXiv Detail & Related papers (2024-09-13T03:23:11Z) - Con-ReCall: Detecting Pre-training Data in LLMs via Contrastive Decoding [118.75567341513897]
Existing methods typically analyze target text in isolation or solely with non-member contexts.
We propose Con-ReCall, a novel approach that leverages the asymmetric distributional shifts induced by member and non-member contexts.
arXiv Detail & Related papers (2024-09-05T09:10:38Z) - Robust Utility-Preserving Text Anonymization Based on Large Language Models [80.5266278002083]
Text anonymization is crucial for sharing sensitive data while maintaining privacy.
Existing techniques face the emerging challenges of re-identification attack ability of Large Language Models.
This paper proposes a framework composed of three LLM-based components -- a privacy evaluator, a utility evaluator, and an optimization component.
arXiv Detail & Related papers (2024-07-16T14:28:56Z) - "Glue pizza and eat rocks" -- Exploiting Vulnerabilities in Retrieval-Augmented Generative Models [74.05368440735468]
Retrieval-Augmented Generative (RAG) models enhance Large Language Models (LLMs)
In this paper, we demonstrate a security threat where adversaries can exploit the openness of these knowledge bases.
arXiv Detail & Related papers (2024-06-26T05:36:23Z) - VulZoo: A Comprehensive Vulnerability Intelligence Dataset [12.229092589037808]
VulZoo is a comprehensive vulnerability intelligence dataset that covers 17 popular vulnerability information sources.
We make VulZoo publicly available and maintain it with incremental updates to facilitate future research.
arXiv Detail & Related papers (2024-06-24T06:39:07Z) - The Vulnerability Is in the Details: Locating Fine-grained Information of Vulnerable Code Identified by Graph-based Detectors [33.395068754566935]
VULEXPLAINER is a tool for locating vulnerability-critical code lines from coarse-level vulnerable code snippets.
It can flag the vulnerability-triggering code statements with an accuracy of around 90% against eight common C/C++ vulnerabilities.
arXiv Detail & Related papers (2024-01-05T10:15:04Z) - CVE representation to build attack positions graphs [0.39945675027960637]
In cybersecurity, CVEs (Common Vulnerabilities and Exposures) are publicly disclosed hardware or software vulnerabilities.
This article points out that these vulnerabilities should be described in greater detail to understand how they could be chained together in a complete attack scenario.
arXiv Detail & Related papers (2023-12-05T08:57:14Z) - Vulnerability Clustering and other Machine Learning Applications of
Semantic Vulnerability Embeddings [23.143031911859847]
We investigated different types of semantic vulnerability embeddings based on natural language processing (NLP) techniques.
We also evaluated their use as a foundation for machine learning applications that can support cyber-security researchers and analysts.
The particular applications we explored and briefly summarize are clustering, classification, and visualization.
arXiv Detail & Related papers (2023-08-23T21:39:48Z) - Online Safety Property Collection and Refinement for Safe Deep
Reinforcement Learning in Mapless Navigation [79.89605349842569]
We introduce the Collection and Refinement of Online Properties (CROP) framework to design properties at training time.
CROP employs a cost signal to identify unsafe interactions and use them to shape safety properties.
We evaluate our approach in several robotic mapless navigation tasks and demonstrate that the violation metric computed with CROP allows higher returns and lower violations over previous Safe DRL approaches.
arXiv Detail & Related papers (2023-02-13T21:19:36Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
This paper presents VELVET, a novel ensemble learning approach to locate vulnerable statements in source code.
Our model combines graph-based and sequence-based neural networks to successfully capture the local and global context of a program graph.
VELVET achieves 99.6% and 43.6% top-1 accuracy over synthetic data and real-world data, respectively.
arXiv Detail & Related papers (2021-12-20T22:45:27Z) - Reinforcement Learning on Encrypted Data [58.39270571778521]
We present a preliminary, experimental study of how a DQN agent trained on encrypted states performs in environments with discrete and continuous state spaces.
Our results highlight that the agent is still capable of learning in small state spaces even in presence of non-deterministic encryption, but performance collapses in more complex environments.
arXiv Detail & Related papers (2021-09-16T21:59:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.