Robot Task Planning and Situation Handling in Open Worlds
- URL: http://arxiv.org/abs/2210.01287v2
- Date: Sun, 29 Sep 2024 01:32:25 GMT
- Title: Robot Task Planning and Situation Handling in Open Worlds
- Authors: Yan Ding, Xiaohan Zhang, Saeid Amiri, Nieqing Cao, Hao Yang, Chad Esselink, Shiqi Zhang,
- Abstract summary: This paper introduces a novel algorithm for open-world task planning and situation handling.
COWP dynamically augments the robot's action knowledge with task-oriented common sense.
This version has been accepted for publication in Autonomous Robots.
- Score: 10.077350377962482
- License:
- Abstract: Automated task planning algorithms have been developed to help robots complete complex tasks that require multiple actions. Most of those algorithms have been developed for "closed worlds" assuming complete world knowledge is provided. However, the real world is generally open, and the robots frequently encounter unforeseen situations that can potentially break the planner's completeness. This paper introduces a novel algorithm (COWP) for open-world task planning and situation handling that dynamically augments the robot's action knowledge with task-oriented common sense. In particular, common sense is extracted from Large Language Models based on the current task at hand and robot skills. For systematic evaluations, we collected a dataset that includes 561 execution-time situations in a dining domain, where each situation corresponds to a state instance of a robot being potentially unable to complete a task using a solution that normally works. Experimental results show that our approach significantly outperforms competitive baselines from the literature in the success rate of service tasks. Additionally, we have demonstrated COWP using a mobile manipulator. The project website is available at: https://cowplanning.github.io/, where a more detailed version can also be found. This version has been accepted for publication in Autonomous Robots.
Related papers
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - COHERENT: Collaboration of Heterogeneous Multi-Robot System with Large Language Models [49.24666980374751]
COHERENT is a novel LLM-based task planning framework for collaboration of heterogeneous multi-robot systems.
A Proposal-Execution-Feedback-Adjustment mechanism is designed to decompose and assign actions for individual robots.
The experimental results show that our work surpasses the previous methods by a large margin in terms of success rate and execution efficiency.
arXiv Detail & Related papers (2024-09-23T15:53:41Z) - Grounding Language Models in Autonomous Loco-manipulation Tasks [3.8363685417355557]
We propose a novel framework that learns, selects, and plans behaviors based on tasks in different scenarios.
We leverage the planning and reasoning features of the large language model (LLM), constructing a hierarchical task graph.
Experiments in simulation and real-world using the CENTAURO robot show that the language model based planner can efficiently adapt to new loco-manipulation tasks.
arXiv Detail & Related papers (2024-09-02T15:27:48Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - Knowledge-Driven Robot Program Synthesis from Human VR Demonstrations [16.321053835017942]
We present a system for automatically generating executable robot control programs from human task demonstrations in virtual reality (VR)
We leverage common-sense knowledge and game engine-based physics to semantically interpret human VR demonstrations.
We demonstrate our approach in the context of force-sensitive fetch-and-place for a robotic shopping assistant.
arXiv Detail & Related papers (2023-06-05T09:37:53Z) - Integrating Action Knowledge and LLMs for Task Planning and Situation
Handling in Open Worlds [10.077350377962482]
This paper introduces a novel framework, called COWP, for open-world task planning and situation handling.
COWP dynamically augments the robot's action knowledge, including the preconditions and effects of actions, with task-oriented commonsense knowledge.
Experimental results show that our approach outperforms competitive baselines from the literature in the success rate of service tasks.
arXiv Detail & Related papers (2023-05-27T22:30:15Z) - ProgPrompt: Generating Situated Robot Task Plans using Large Language
Models [68.57918965060787]
Large language models (LLMs) can be used to score potential next actions during task planning.
We present a programmatic LLM prompt structure that enables plan generation functional across situated environments.
arXiv Detail & Related papers (2022-09-22T20:29:49Z) - Reasoning with Scene Graphs for Robot Planning under Partial
Observability [7.121002367542985]
We develop an algorithm called scene analysis for robot planning (SARP) that enables robots to reason with visual contextual information.
Experiments have been conducted using multiple 3D environments in simulation, and a dataset collected by a real robot.
arXiv Detail & Related papers (2022-02-21T18:45:56Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
Many multi-task reinforcement learning efforts assume the robot can collect data from all tasks at all times.
In this work, we study a practical sequential multi-task RL problem motivated by the practical constraints of physical robotic systems.
We derive an approach that effectively leverages the data and policies learned for previous tasks to cumulatively grow the robot's skill-set.
arXiv Detail & Related papers (2021-09-19T18:00:51Z) - iCORPP: Interleaved Commonsense Reasoning and Probabilistic Planning on
Robots [46.13039152809055]
We present a novel algorithm, called iCORPP, to simultaneously estimate the current world state, reason about world dynamics, and construct task-oriented controllers.
Results show significant improvements in scalability, efficiency, and adaptiveness, compared to competitive baselines.
arXiv Detail & Related papers (2020-04-18T17:46:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.