論文の概要: Causal Intervention-based Prompt Debiasing for Event Argument Extraction
- arxiv url: http://arxiv.org/abs/2210.01561v1
- Date: Tue, 4 Oct 2022 12:32:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 13:13:08.776217
- Title: Causal Intervention-based Prompt Debiasing for Event Argument Extraction
- Title(参考訳): 事象列抽出のための因果干渉に基づくプロンプトデバイアス
- Authors: Jiaju Lin, Jie Zhou, Qin Chen
- Abstract要約: 我々は、名前ベースのプロンプトとオントロジーベースのプロンプトの2種類のプロンプトを比較し、オントロジーベースのプロンプトメソッドがゼロショットイベント引数抽出(EAE)においてそのプロンプトをいかに上回っているかを明らかにする。
2つのベンチマーク実験により,デバイアス法によって修正されたベースラインモデルは,より効果的かつ堅牢になり,対向攻撃に対する耐性が著しく向上することが示された。
- 参考スコア(独自算出の注目度): 19.057467535856485
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prompt-based methods have become increasingly popular among information
extraction tasks, especially in low-data scenarios. By formatting a finetune
task into a pre-training objective, prompt-based methods resolve the data
scarce problem effectively. However, seldom do previous research investigate
the discrepancy among different prompt formulating strategies. In this work, we
compare two kinds of prompts, name-based prompt and ontology-base prompt, and
reveal how ontology-base prompt methods exceed its counterpart in zero-shot
event argument extraction (EAE) . Furthermore, we analyse the potential risk in
ontology-base prompts via a causal view and propose a debias method by causal
intervention. Experiments on two benchmarks demonstrate that modified by our
debias method, the baseline model becomes both more effective and robust, with
significant improvement in the resistance to adversarial attacks.
- Abstract(参考訳): プロンプトベースの手法は情報抽出タスク、特に低データシナリオでますます普及している。
細かいタスクを事前学習目的にフォーマットすることで、プロンプトベースの手法はデータの不足問題を効果的に解決する。
しかし,前回の研究では,異なるプロンプト・フォーメーティング・ストラテジーの相違をほとんど調査していない。
本研究では,名前ベースプロンプトとオントロジベースプロンプトの2種類のプロンプトを比較し,ゼロショットイベント引数抽出(eae)においてオントロジベースプロンプトメソッドがそのプロンプトをいかに越えているかを明らかにする。
さらに,オントロジベースプロンプトにおける潜在的なリスクを因果的視点で分析し,因果的介入によるデバイアス法を提案する。
2つのベンチマークによる実験により、debias法によりベースラインモデルがより効果的かつ堅牢になり、敵の攻撃に対する耐性が大幅に向上することを示した。
関連論文リスト
- Adaptive Prompting for Continual Relation Extraction: A Within-Task Variance Perspective [23.79259400522239]
本稿では,連続関係抽出における破滅的忘れに対処する新しい手法を提案する。
提案手法では各タスクにプロンプトプールを導入し,タスク内の変動を捉えるとともに,タスク間の差異を増大させる。
論文 参考訳(メタデータ) (2024-12-11T11:00:33Z) - READ: Improving Relation Extraction from an ADversarial Perspective [33.44949503459933]
関係抽出(RE)に特化して設計された対角的学習法を提案する。
提案手法では,シーケンスレベルの摂動とトークンレベルの摂動の両方をサンプルに導入し,個別の摂動語彙を用いてエンティティとコンテキストの摂動の探索を改善する。
論文 参考訳(メタデータ) (2024-04-02T16:42:44Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
根本原因局所化のためのマルチモーダル因果構造学習手法であるMulanを提案する。
ログ選択言語モデルを利用してログ表現学習を行い、ログシーケンスを時系列データに変換する。
また、モダリティの信頼性を評価し、最終因果グラフを共同学習するための新しいキーパフォーマンスインジケータ対応アテンション機構も導入する。
論文 参考訳(メタデータ) (2024-02-04T05:50:38Z) - Few-Shot Anomaly Detection with Adversarial Loss for Robust Feature
Representations [8.915958745269442]
異常検出は、データセット内の通常のパターンや分布から逸脱したデータポイントを特定することを目的とした、重要で困難なタスクである。
ワンクラス・ワン・モデル手法を用いて様々な手法が提案されているが、これらの手法はメモリ不足や訓練に十分なデータを必要とするといった現実的な問題に直面していることが多い。
本稿では,より堅牢で一般化された特徴表現を得るために,対向訓練損失を統合する数発の異常検出手法を提案する。
論文 参考訳(メタデータ) (2023-12-04T09:45:02Z) - Token-Level Adversarial Prompt Detection Based on Perplexity Measures
and Contextual Information [67.78183175605761]
大規模言語モデルは、敵の迅速な攻撃に影響を受けやすい。
この脆弱性は、LLMの堅牢性と信頼性に関する重要な懸念を浮き彫りにしている。
トークンレベルで敵のプロンプトを検出するための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-20T03:17:21Z) - Progressive Evidence Refinement for Open-domain Multimodal Retrieval
Question Answering [20.59485758381809]
現在のマルチモーダル検索質問答えモデルは2つの大きな課題に直面している。
モデルへの入力として圧縮されたエビデンスの特徴を利用すると、エビデンス内の詳細な情報が失われる。
本稿では,これらの問題を緩和するための証拠検索と質問応答のための2段階の枠組みを提案する。
論文 参考訳(メタデータ) (2023-10-15T01:18:39Z) - Black-box Adversarial Attacks against Dense Retrieval Models: A
Multi-view Contrastive Learning Method [115.29382166356478]
本稿では,敵探索攻撃(AREA)タスクを紹介する。
DRモデルは、DRモデルによって取得された候補文書の初期セットの外側にあるターゲット文書を取得するように、DRモデルを騙すことを目的としている。
NRM攻撃で報告された有望な結果は、DRモデルに一般化されない。
マルチビュー表現空間における対照的な学習問題として,DRモデルに対する攻撃を形式化する。
論文 参考訳(メタデータ) (2023-08-19T00:24:59Z) - Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment
Effect Estimation [137.3520153445413]
下流推論に重点を置く因果発見手法の評価において,顕著なギャップが存在する。
我々は,GFlowNetsに基づく新たな手法を含む,確立された7つの基本因果探索手法を評価する。
研究の結果,研究対象のアルゴリズムのいくつかは,多種多様なATEモードを効果的に捉えることができることがわかった。
論文 参考訳(メタデータ) (2023-07-11T02:58:10Z) - ADDMU: Detection of Far-Boundary Adversarial Examples with Data and
Model Uncertainty Estimation [125.52743832477404]
AED(Adversarial Examples Detection)は、敵攻撃に対する重要な防御技術である。
本手法は, 正逆検出とFB逆検出の2種類の不確実性推定を組み合わせた新しい手法である textbfADDMU を提案する。
提案手法は,各シナリオにおいて,従来の手法よりも3.6と6.0のEmphAUC点が優れていた。
論文 参考訳(メタデータ) (2022-10-22T09:11:12Z) - Deterministic and Discriminative Imitation (D2-Imitation): Revisiting
Adversarial Imitation for Sample Efficiency [61.03922379081648]
本稿では,敵対的トレーニングやmin-max最適化を必要としない非政治的サンプル効率の手法を提案する。
実験の結果, D2-Imitation はサンプル効率の向上に有効であることが示唆された。
論文 参考訳(メタデータ) (2021-12-11T19:36:19Z) - TREATED:Towards Universal Defense against Textual Adversarial Attacks [28.454310179377302]
本稿では,様々な摂動レベルの攻撃に対して,仮定なしに防御できる汎用的対向検出手法であるTREATEDを提案する。
3つの競合するニューラルネットワークと2つの広く使われているデータセットの大規模な実験により、本手法はベースラインよりも優れた検出性能が得られることが示された。
論文 参考訳(メタデータ) (2021-09-13T03:31:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。