論文の概要: Predicting the traffic flux in the city of Valencia with Deep Learning
- arxiv url: http://arxiv.org/abs/2210.01630v1
- Date: Tue, 4 Oct 2022 14:19:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 14:50:12.656918
- Title: Predicting the traffic flux in the city of Valencia with Deep Learning
- Title(参考訳): 深層学習によるバレンシア市の交通流束予測
- Authors: Miguel G. Folgado, Veronica Sanz, Johannes Hirn, Edgar G. Lorenzo and
Javier F. Urchueguia
- Abstract要約: 都市内を流れる交通の流れに関する大量のデータにより、人工知能は、低エミッションゾーン政策に関連付けられているような排出削減対策を可能にするために、事前に十分なトラフィックフラックスを予測できるかどうかを検討する。
予測モデルを構築するには、世界で最も密集した都市であるバレンシア交通センサーシステムを使用します。
LSTMは, 実測データからパターンを抽出することにより, 交通フラックスの将来的な進化を予測することができることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Traffic congestion is a major urban issue due to its adverse effects on
health and the environment, so much so that reducing it has become a priority
for urban decision-makers. In this work, we investigate whether a high amount
of data on traffic flow throughout a city and the knowledge of the road city
network allows an Artificial Intelligence to predict the traffic flux far
enough in advance in order to enable emission reduction measures such as those
linked to the Low Emission Zone policies. To build a predictive model, we use
the city of Valencia traffic sensor system, one of the densest in the world,
with nearly 3500 sensors distributed throughout the city. In this work we train
and characterize an LSTM (Long Short-Term Memory) Neural Network to predict
temporal patterns of traffic in the city using historical data from the years
2016 and 2017. We show that the LSTM is capable of predicting future evolution
of the traffic flux in real-time, by extracting patterns out of the measured
data.
- Abstract(参考訳): 交通渋滞は、健康や環境に悪影響を及ぼすため、都市における大きな問題であり、都市意思決定者にとって交通の削減が優先事項となっている。
本研究では,都市全体の交通の流れに関する大量のデータと道路都市ネットワークの知識が,人工知能によって事前に十分な交通流束を予測できるかどうかを調査し,低排出帯政策などによる排出削減対策を実現する。
予測モデルを構築するには、世界で最も密集した都市であるバレンシア交通センサーシステムを使用します。
本研究では、2016年と2017年の歴史的データを用いて、市内の交通の時間的パターンを予測するLSTM(Long Short-Term Memory)ニューラルネットワークを訓練し、特徴付けする。
LSTMは,実測データからパターンを抽出することにより,交通フラックスの将来的な進化を予測することができることを示す。
関連論文リスト
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - SSMT: Few-Shot Traffic Forecasting with Single Source Meta-Transfer [19.768107394061374]
本稿では,交通予測に単一ソース市にのみ依存するSSMT(Single Source Meta-Transfer Learning)を提案する。
提案手法は, 限られたデータを持つ都市において, この伝達された知識を活用して, 数発の交通予報を可能にする。
我々は、ソースシティからの多様な時間的トラフィックパターンを活用することで、正弦波位置符号化の考え方を拡張し、メタラーニングタスクを確立する。
論文 参考訳(メタデータ) (2024-10-21T02:17:25Z) - Establishing a real-time traffic alarm in the city of Valencia with Deep
Learning [0.0]
スペイン・バレンシア市における交通フラックスと汚染の相関分析を行った。
道路が今後30分で異常に高いトラフィックを経験する確率を予測するアラームシステムの開発を行う。
論文 参考訳(メタデータ) (2023-09-05T07:47:43Z) - Uncertainty Quantification for Image-based Traffic Prediction across
Cities [63.136794104678025]
不確実量化(UQ)法は確率論的推論を誘導するためのアプローチを提供する。
複数の都市にまたがる大規模画像ベース交通データセットへの適用について検討する。
モスクワ市を事例として,交通行動に対する時間的・空間的影響を考察した。
論文 参考訳(メタデータ) (2023-08-11T13:35:52Z) - Leveraging Neo4j and deep learning for traffic congestion simulation &
optimization [0.0]
渋滞や事故の場合に交通が後進的に伝播し,道路の他の部分への全体的影響を示す。
また、実時間トラフィックデータに基づいて連続的なRNN-LSTM(Long Short-Term Memory)ディープラーニングモデルを訓練し、道路固有の渋滞に基づいてシミュレーション結果の精度を評価する。
論文 参考訳(メタデータ) (2023-04-01T01:23:10Z) - Traffic4cast at NeurIPS 2021 -- Temporal and Spatial Few-Shot Transfer
Learning in Gridded Geo-Spatial Processes [61.16854022482186]
NeurIPS 2019と2020のIARAI Traffic4castコンペティションでは、ニューラルネットワークが将来の交通条件を1時間以内に予測することに成功した。
U-Netsは、この複雑な現実世界の地理空間的プロセスにおいて、関連する特徴を抽出する能力を実証し、勝利したアーキテクチャであることが証明された。
コンペティションは2年間で10都市をカバーし、1012以上のGPSプローブデータから収集したデータを提供する。
論文 参考訳(メタデータ) (2022-03-31T14:40:01Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
我々はスイスのチューリッヒの都市ネットワーク内の地域でビデオ計測による実験キャンペーンを組織した。
我々は,既存のサーマルカメラからの測定を確実にすることで,交通の流れや走行時間の観点からの交通状況の把握に注力する。
本稿では,様々なデータソースの融合による移動時間を推定するために,単純かつ効率的な多重線形回帰(MLR)モデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T08:13:57Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
動脈交通予測は 現代のインテリジェント交通システムの発展に 重要な役割を担っています
動脈交通予測に関する既存の研究の多くは、ループセンサからの流量と占有率の時間的測定のみを考慮し、上流と下流の検出器間のリッチな空間的関係を無視している。
我々は,信号タイミング計画から発生する空間情報を用いて,深層学習アプローチである拡散畳み込みリカレントニューラルネットワークを強化することで,このギャップを埋める。
論文 参考訳(メタデータ) (2020-12-25T01:40:29Z) - Traffic Flow Forecast of Road Networks with Recurrent Neural Networks [0.0]
効率的なインテリジェント交通システムには交通流の予測が不可欠である。
本研究では, 様々なリカレントニューラルネットワークを用いて, この予測を行う。
多くの場合、ゲート再帰単位を持つベクトル出力モデルは、テストセット上で最小の誤差を達成した。
論文 参考訳(メタデータ) (2020-06-08T15:17:58Z) - Traffic Modelling and Prediction via Symbolic Regression on Road Sensor
Data [0.8602553195689513]
本稿では,ラグ演算子により強化されたシンボル回帰に基づく,新しいかつ正確な交通流予測手法を提案する。
提案手法は都市道路の複雑度に適したロバストモデルであり,高速道路よりも予測が困難である。
論文 参考訳(メタデータ) (2020-02-14T16:03:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。