Text Characterization Toolkit
- URL: http://arxiv.org/abs/2210.01734v1
- Date: Tue, 4 Oct 2022 16:54:11 GMT
- Title: Text Characterization Toolkit
- Authors: Daniel Simig, Tianlu Wang, Verna Dankers, Peter Henderson,
Khuyagbaatar Batsuren, Dieuwke Hupkes, Mona Diab
- Abstract summary: We argue that deeper results analysis should become the de-facto standard when presenting new models or benchmarks.
We present a tool that researchers can use to study properties of the dataset and the influence of those properties on their models' behaviour.
- Score: 33.6713815884553
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In NLP, models are usually evaluated by reporting single-number performance
scores on a number of readily available benchmarks, without much deeper
analysis. Here, we argue that - especially given the well-known fact that
benchmarks often contain biases, artefacts, and spurious correlations - deeper
results analysis should become the de-facto standard when presenting new models
or benchmarks. We present a tool that researchers can use to study properties
of the dataset and the influence of those properties on their models'
behaviour. Our Text Characterization Toolkit includes both an easy-to-use
annotation tool, as well as off-the-shelf scripts that can be used for specific
analyses. We also present use-cases from three different domains: we use the
tool to predict what are difficult examples for given well-known trained models
and identify (potentially harmful) biases and heuristics that are present in a
dataset.
Related papers
- Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - Numerical Literals in Link Prediction: A Critical Examination of Models and Datasets [2.5999037208435705]
Link Prediction models that incorporate numerical literals have shown minor improvements on existing benchmark datasets.
It is unclear whether a model is actually better in using numerical literals, or better capable of utilizing the graph structure.
We propose a methodology to evaluate LP models that incorporate numerical literals.
arXiv Detail & Related papers (2024-07-25T17:55:33Z) - Detection and Measurement of Syntactic Templates in Generated Text [58.111650675717414]
We offer an analysis of syntactic features to characterize general repetition in models.
We find that models tend to produce templated text in downstream tasks at a higher rate than what is found in human-reference texts.
arXiv Detail & Related papers (2024-06-28T19:34:23Z) - Explaining Pre-Trained Language Models with Attribution Scores: An
Analysis in Low-Resource Settings [32.03184402316848]
We analyze attribution scores extracted from prompt-based models w.r.t. plausibility and faithfulness.
We find that using the prompting paradigm yields more plausible explanations than fine-tuning the models in low-resource settings.
arXiv Detail & Related papers (2024-03-08T14:14:37Z) - TRIAGE: Characterizing and auditing training data for improved
regression [80.11415390605215]
We introduce TRIAGE, a novel data characterization framework tailored to regression tasks and compatible with a broad class of regressors.
TRIAGE utilizes conformal predictive distributions to provide a model-agnostic scoring method, the TRIAGE score.
We show that TRIAGE's characterization is consistent and highlight its utility to improve performance via data sculpting/filtering, in multiple regression settings.
arXiv Detail & Related papers (2023-10-29T10:31:59Z) - Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis [50.972595036856035]
We present a code that successfully replicates results from six popular and recent graph recommendation models.
We compare these graph models with traditional collaborative filtering models that historically performed well in offline evaluations.
By investigating the information flow from users' neighborhoods, we aim to identify which models are influenced by intrinsic features in the dataset structure.
arXiv Detail & Related papers (2023-08-01T09:31:44Z) - Short Answer Grading Using One-shot Prompting and Text Similarity
Scoring Model [2.14986347364539]
We developed an automated short answer grading model that provided both analytic scores and holistic scores.
The accuracy and quadratic weighted kappa of our model were 0.67 and 0.71 on a subset of the publicly available ASAG dataset.
arXiv Detail & Related papers (2023-05-29T22:05:29Z) - Ordinal time series analysis with the R package otsfeatures [0.0]
R package otsfeatures attempts to provide a set of simple functions for analyzing ordinal time series.
The output of several functions can be employed to perform traditional machine learning tasks including clustering, classification or outlier detection.
arXiv Detail & Related papers (2023-04-24T16:40:27Z) - Finding Dataset Shortcuts with Grammar Induction [85.47127659108637]
We propose to use probabilistic grammars to characterize and discover shortcuts in NLP datasets.
Specifically, we use a context-free grammar to model patterns in sentence classification datasets and use a synchronous context-free grammar to model datasets involving sentence pairs.
The resulting grammars reveal interesting shortcut features in a number of datasets, including both simple and high-level features.
arXiv Detail & Related papers (2022-10-20T19:54:11Z) - Assessing Out-of-Domain Language Model Performance from Few Examples [38.245449474937914]
We address the task of predicting out-of-domain (OOD) performance in a few-shot fashion.
We benchmark the performance on this task when looking at model accuracy on the few-shot examples.
We show that attribution-based factors can help rank relative model OOD performance.
arXiv Detail & Related papers (2022-10-13T04:45:26Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
We present a general methodology for interpretable evaluation for the named entity recognition (NER) task.
The proposed evaluation method enables us to interpret the differences in models and datasets, as well as the interplay between them.
By making our analysis tool available, we make it easy for future researchers to run similar analyses and drive progress in this area.
arXiv Detail & Related papers (2020-11-13T10:53:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.