論文の概要: Evaluating Disentanglement in Generative Models Without Knowledge of
Latent Factors
- arxiv url: http://arxiv.org/abs/2210.01760v1
- Date: Tue, 4 Oct 2022 17:27:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 13:40:57.103035
- Title: Evaluating Disentanglement in Generative Models Without Knowledge of
Latent Factors
- Title(参考訳): 潜在因子の知識のない生成モデルにおける絡み合いの評価
- Authors: Chester Holtz, Gal Mishne, and Alexander Cloninger
- Abstract要約: 本稿では,学習中に提示される学習力学に基づいて生成モデルのランキング付けを行う手法を提案する。
本手法は,近年の解離の理論的特徴から着想を得たものであり,その根底にある潜伏因子の監督は不要である。
- 参考スコア(独自算出の注目度): 71.79984112148865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Probabilistic generative models provide a flexible and systematic framework
for learning the underlying geometry of data. However, model selection in this
setting is challenging, particularly when selecting for ill-defined qualities
such as disentanglement or interpretability. In this work, we address this gap
by introducing a method for ranking generative models based on the training
dynamics exhibited during learning. Inspired by recent theoretical
characterizations of disentanglement, our method does not require supervision
of the underlying latent factors. We evaluate our approach by demonstrating the
need for disentanglement metrics which do not require labels\textemdash the
underlying generative factors. We additionally demonstrate that our approach
correlates with baseline supervised methods for evaluating disentanglement.
Finally, we show that our method can be used as an unsupervised indicator for
downstream performance on reinforcement learning and fairness-classification
problems.
- Abstract(参考訳): 確率的生成モデルは、基礎となるデータの幾何学を学ぶための柔軟で体系的なフレームワークを提供する。
しかしながら、特に乱れや解釈可能性といった不明確な性質を選択する場合には、この設定でのモデル選択は困難である。
本研究では,学習中に提示される学習力学に基づく生成モデルランキング手法を導入することで,このギャップに対処する。
乱れの最近の理論的特徴から着想を得た本手法では,潜伏因子の監視は不要である。
提案手法は,ラベルを必要としないアンタングルメント指標の必要性を実証し,その基盤となる生成因子をtextemdash で評価する。
また,本手法とベースライン教師あり手法との相関性も示している。
最後に,本手法は,強化学習と公平度分類問題に対する下流性能の教師なし指標として利用できることを示す。
関連論文リスト
- Benchmarks as Microscopes: A Call for Model Metrology [76.64402390208576]
現代の言語モデル(LM)は、能力評価において新たな課題を提起する。
メトリクスに自信を持つためには、モデルミアロジの新たな規律が必要です。
論文 参考訳(メタデータ) (2024-07-22T17:52:12Z) - The Edge-of-Reach Problem in Offline Model-Based Reinforcement Learning [37.387280102209274]
オフライン強化学習は、事前に収集されたデータセットからエージェントをトレーニング可能にすることを目的としている。
モデルベースの手法は、エージェントが学習されたダイナミックスモデルでロールアウトを介して追加の合成データを収集できるようにすることで、ソリューションを提供する。
しかし、学習したダイナミックスモデルを真のエラーフリーなダイナミックスに置き換えると、既存のモデルベースのメソッドは完全に失敗する。
本稿では, エッジ・オブ・リーチ問題に直接対処する単純で堅牢な手法であるReach-Aware Value Learning (RAVL)を提案する。
論文 参考訳(メタデータ) (2024-02-19T20:38:00Z) - A Bayesian Unification of Self-Supervised Clustering and Energy-Based
Models [11.007541337967027]
我々は、最先端の自己教師型学習目標のベイズ分析を行う。
目的関数が既存の自己教師型学習戦略より優れていることを示す。
また、GEDIをニューロシンボリックな枠組みに統合できることを実証した。
論文 参考訳(メタデータ) (2023-12-30T04:46:16Z) - Time-series Generation by Contrastive Imitation [87.51882102248395]
モーメントマッチングの目的によってモチベーションされ、複合的エラーを軽減し、局所的(しかし前方的な)遷移ポリシーを最適化する。
推論において、学習されたポリシーは反復的なサンプリングのジェネレータとして機能し、学習されたエネルギーはサンプルの品質を評価するための軌道レベル尺度として機能する。
論文 参考訳(メタデータ) (2023-11-02T16:45:25Z) - Class-Incremental Mixture of Gaussians for Deep Continual Learning [15.49323098362628]
本稿では,ガウスモデルの混合を連続学習フレームワークに組み込むことを提案する。
固定抽出器を用いたメモリフリーシナリオにおいて,本モデルが効果的に学習可能であることを示す。
論文 参考訳(メタデータ) (2023-07-09T04:33:19Z) - Multicriteria interpretability driven Deep Learning [0.0]
ディープラーニングの手法はパフォーマンスで有名だが、その解釈可能性の欠如は、高い文脈での学習を妨げている。
近年のモデル手法では、モデルの内部動作をリバースエンジニアリングすることで、ポストホック解釈可能性法を提供することでこの問題に対処している。
本稿では,目的関数に知識を注入することで,モデルの結果に特徴的影響を制御できるマルチクレータ非依存手法を提案する。
論文 参考訳(メタデータ) (2021-11-28T09:41:13Z) - Learning from others' mistakes: Avoiding dataset biases without modeling
them [111.17078939377313]
最先端自然言語処理(NLP)モデルは、意図したタスクをターゲットとする機能ではなく、データセットのバイアスや表面形状の相関をモデル化することを学ぶことが多い。
これまでの研究は、バイアスに関する知識が利用できる場合に、これらの問題を回避するための効果的な方法を示してきた。
本稿では,これらの問題点を無視する学習モデルについて述べる。
論文 参考訳(メタデータ) (2020-12-02T16:10:54Z) - A Sober Look at the Unsupervised Learning of Disentangled
Representations and their Evaluation [63.042651834453544]
モデルとデータの両方に帰納的バイアスを伴わずに,非教師なしの非教師付き表現学習は不可能であることを示す。
異なる手法は、対応する損失によって「強化」された特性を効果的に強制するが、よく見分けられたモデルは監督なしでは特定できないように見える。
以上の結果から,遠絡学習における今後の研究は,帰納的バイアスと(単純に)監督の役割を明確化すべきであることが示唆された。
論文 参考訳(メタデータ) (2020-10-27T10:17:15Z) - Evaluating the Disentanglement of Deep Generative Models through
Manifold Topology [66.06153115971732]
本稿では,生成モデルのみを用いた乱れの定量化手法を提案する。
複数のデータセットにまたがるいくつかの最先端モデルを実証的に評価する。
論文 参考訳(メタデータ) (2020-06-05T20:54:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。