論文の概要: Poisson Reweighted Laplacian Uncertainty Sampling for Graph-based Active
Learning
- arxiv url: http://arxiv.org/abs/2210.15786v1
- Date: Thu, 27 Oct 2022 22:07:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-31 15:29:46.977954
- Title: Poisson Reweighted Laplacian Uncertainty Sampling for Graph-based Active
Learning
- Title(参考訳): グラフに基づくアクティブラーニングのためのポアソン重み付きラプラシアン不確かさサンプリング
- Authors: Kevin Miller and Jeff Calder
- Abstract要約: グラフに基づく能動学習において,不確実性サンプリングは探索と搾取を両立させるのに十分であることを示す。
特に,最近開発されたアルゴリズムであるPoisson ReWeighted Laplace Learning (PWLL) を用いて分類を行う。
本稿では,複数のグラフに基づく画像分類問題に対する実験結果について述べる。
- 参考スコア(独自算出の注目度): 1.6752182911522522
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that uncertainty sampling is sufficient to achieve exploration versus
exploitation in graph-based active learning, as long as the measure of
uncertainty properly aligns with the underlying model and the model properly
reflects uncertainty in unexplored regions. In particular, we use a recently
developed algorithm, Poisson ReWeighted Laplace Learning (PWLL) for the
classifier and we introduce an acquisition function designed to measure
uncertainty in this graph-based classifier that identifies unexplored regions
of the data. We introduce a diagonal perturbation in PWLL which produces
exponential localization of solutions, and controls the exploration versus
exploitation tradeoff in active learning. We use the well-posed continuum limit
of PWLL to rigorously analyze our method, and present experimental results on a
number of graph-based image classification problems.
- Abstract(参考訳): グラフに基づくアクティブラーニングにおいて、不確実性サンプリングは、不確実性の測定が基礎となるモデルと適切に一致し、未探索領域における不確実性が適切に反映される限り、探索と搾取に十分であることを示す。
特に,最近開発されたアルゴリズムであるpoisson reweighted laplace learning (pwll) を分類器に適用し,探索されていないデータ領域を識別するこのグラフに基づく分類器の不確実性を測定するための取得関数を提案する。
本稿では, PWLLにおける対角的摂動を導入し, 解の指数的局所化を実現し, 能動学習における探索対搾取トレードオフを制御する。
提案手法の厳密な解析には,PWLLの良好な連続限界を用いるとともに,多数のグラフに基づく画像分類問題に対する実験結果を示す。
関連論文リスト
- Learning Latent Graph Structures and their Uncertainty [63.95971478893842]
グラフニューラルネットワーク(GNN)は、モデル精度を高めるために帰納バイアスとしてリレーショナル情報を使用する。
課題関連関係が不明なため,下流予測タスクを解きながら学習するためのグラフ構造学習手法が提案されている。
論文 参考訳(メタデータ) (2024-05-30T10:49:22Z) - Uncertainty for Active Learning on Graphs [70.44714133412592]
不確実性サンプリングは、機械学習モデルのデータ効率を改善することを目的とした、アクティブな学習戦略である。
予測の不確実性を超えた不確実性サンプリングをベンチマークし、他のアクティブラーニング戦略に対する大きなパフォーマンスギャップを強調します。
提案手法は,データ生成プロセスの観点から基幹的ベイズ不確実性推定法を開発し,不確実性サンプリングを最適クエリへ導く上での有効性を実証する。
論文 参考訳(メタデータ) (2024-05-02T16:50:47Z) - From Registration Uncertainty to Segmentation Uncertainty [11.294691606431526]
本稿では, 画像登録において, エピステミックとアレタリックのセグメンテーションの不確実性の両方を同時に推定する新しい枠組みを提案する。
既存の登録不確実性を推定する手法とともにセグメンテーションの不確実性を導入することにより、画像登録の異なる段階における潜在的な不確実性について重要な洞察を提供する。
論文 参考訳(メタデータ) (2024-03-08T07:16:14Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
アクティブラーニング(英: Active Learning)は、ラベルのないデータを戦略的に選択してクエリすることで、モデルの性能を向上させることを目的とした機械学習パラダイムである。
効果的な選択戦略の1つはモデルの予測の不確実性に基づくもので、サンプルがどの程度情報的であるかの尺度として解釈できる。
本稿では,予測されたラベルの不一致の最小確率として,最小不一致距離(LDM)を提案する。
論文 参考訳(メタデータ) (2024-01-18T08:12:23Z) - Model-Based Uncertainty in Value Functions [89.31922008981735]
MDP上の分布によって引き起こされる値の分散を特徴付けることに重点を置いている。
従来の作業は、いわゆる不確実性ベルマン方程式を解くことで、値よりも後方の分散を境界にしている。
我々は、解が値の真後分散に収束する新しい不確実性ベルマン方程式を提案する。
論文 参考訳(メタデータ) (2023-02-24T09:18:27Z) - Deep Active Learning with Noise Stability [24.54974925491753]
ラベルのないデータの不確実性推定は、アクティブな学習に不可欠である。
本稿では,雑音の安定性を利用して不確実性を推定する新しいアルゴリズムを提案する。
本手法はコンピュータビジョン,自然言語処理,構造データ解析など,様々なタスクに適用可能である。
論文 参考訳(メタデータ) (2022-05-26T13:21:01Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - Unsupervised Embedding Learning from Uncertainty Momentum Modeling [37.674449317054716]
本研究では,与えられた未ラベル学習サンプルの不確かさを明示的にモデル化し,探索する新しい手法を提案する。
このような不確実性モデリングのモーメントを学習に利用し、アウトレーヤに取り組むのに役立ちます。
論文 参考訳(メタデータ) (2021-07-19T14:06:19Z) - Ask-n-Learn: Active Learning via Reliable Gradient Representations for
Image Classification [29.43017692274488]
深い予測モデルは、ラベル付きトレーニングデータという形で人間の監督に依存する。
Ask-n-Learnは,各アルゴリズムで推定されたペスドラベルを用いて得られる勾配埋め込みに基づく能動的学習手法である。
論文 参考訳(メタデータ) (2020-09-30T05:19:56Z) - Graph Embedding with Data Uncertainty [113.39838145450007]
スペクトルベースのサブスペース学習は、多くの機械学習パイプラインにおいて、一般的なデータ前処理ステップである。
ほとんどの部分空間学習法は、不確実性の高いデータにつながる可能性のある測定の不正確さやアーティファクトを考慮していない。
論文 参考訳(メタデータ) (2020-09-01T15:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。