Tree Mover's Distance: Bridging Graph Metrics and Stability of Graph
Neural Networks
- URL: http://arxiv.org/abs/2210.01906v1
- Date: Tue, 4 Oct 2022 21:03:52 GMT
- Title: Tree Mover's Distance: Bridging Graph Metrics and Stability of Graph
Neural Networks
- Authors: Ching-Yao Chuang, Stefanie Jegelka
- Abstract summary: We propose a pseudometric for attributed graphs, the Tree Mover's Distance (TMD), and study its relation to generalization.
First, we show that TMD captures properties relevant to graph classification; a simple TMD-SVM performs competitively with standard GNNs.
Second, we relate TMD to generalization of GNNs under distribution shifts, and show that it correlates well with performance drop under such shifts.
- Score: 54.225220638606814
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding generalization and robustness of machine learning models
fundamentally relies on assuming an appropriate metric on the data space.
Identifying such a metric is particularly challenging for non-Euclidean data
such as graphs. Here, we propose a pseudometric for attributed graphs, the Tree
Mover's Distance (TMD), and study its relation to generalization. Via a
hierarchical optimal transport problem, TMD reflects the local distribution of
node attributes as well as the distribution of local computation trees, which
are known to be decisive for the learning behavior of graph neural networks
(GNNs). First, we show that TMD captures properties relevant to graph
classification: a simple TMD-SVM performs competitively with standard GNNs.
Second, we relate TMD to generalization of GNNs under distribution shifts, and
show that it correlates well with performance drop under such shifts.
Related papers
- Graph Out-of-Distribution Generalization via Causal Intervention [69.70137479660113]
We introduce a conceptually simple yet principled approach for training robust graph neural networks (GNNs) under node-level distribution shifts.
Our method resorts to a new learning objective derived from causal inference that coordinates an environment estimator and a mixture-of-expert GNN predictor.
Our model can effectively enhance generalization with various types of distribution shifts and yield up to 27.4% accuracy improvement over state-of-the-arts on graph OOD generalization benchmarks.
arXiv Detail & Related papers (2024-02-18T07:49:22Z) - Towards Robust Fidelity for Evaluating Explainability of Graph Neural Networks [32.345435955298825]
Graph Neural Networks (GNNs) are neural models that leverage the dependency structure in graphical data via message passing among the graph nodes.
A main challenge in studying GNN explainability is to provide fidelity measures that evaluate the performance of these explanation functions.
This paper studies this foundational challenge, spotlighting the inherent limitations of prevailing fidelity metrics.
arXiv Detail & Related papers (2023-10-03T06:25:14Z) - Graph Out-of-Distribution Generalization with Controllable Data
Augmentation [51.17476258673232]
Graph Neural Network (GNN) has demonstrated extraordinary performance in classifying graph properties.
Due to the selection bias of training and testing data, distribution deviation is widespread.
We propose OOD calibration to measure the distribution deviation of virtual samples.
arXiv Detail & Related papers (2023-08-16T13:10:27Z) - Implicit Graph Neural Diffusion Networks: Convergence, Generalization,
and Over-Smoothing [7.984586585987328]
Implicit Graph Neural Networks (GNNs) have achieved significant success in addressing graph learning problems.
We introduce a geometric framework for designing implicit graph diffusion layers based on a parameterized graph Laplacian operator.
We show how implicit GNN layers can be viewed as the fixed-point equation of a Dirichlet energy minimization problem.
arXiv Detail & Related papers (2023-08-07T05:22:33Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
We propose an end-to-end model named MentorGNN that aims to supervise the pre-training process of GNNs across graphs.
We shed new light on the problem of domain adaption on relational data (i.e., graphs) by deriving a natural and interpretable upper bound on the generalization error of the pre-trained GNNs.
arXiv Detail & Related papers (2022-08-21T15:12:08Z) - OOD-GNN: Out-of-Distribution Generalized Graph Neural Network [73.67049248445277]
Graph neural networks (GNNs) have achieved impressive performance when testing and training graph data come from identical distribution.
Existing GNNs lack out-of-distribution generalization abilities so that their performance substantially degrades when there exist distribution shifts between testing and training graph data.
We propose an out-of-distribution generalized graph neural network (OOD-GNN) for achieving satisfactory performance on unseen testing graphs that have different distributions with training graphs.
arXiv Detail & Related papers (2021-12-07T16:29:10Z) - Graph Networks with Spectral Message Passing [1.0742675209112622]
We introduce the Spectral Graph Network, which applies message passing to both the spatial and spectral domains.
Our results show that the Spectral GN promotes efficient training, reaching high performance with fewer training iterations despite having more parameters.
arXiv Detail & Related papers (2020-12-31T21:33:17Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
We leverage graph signal processing to characterize the representation space of graph neural networks (GNNs)
We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology.
We also study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
arXiv Detail & Related papers (2020-03-08T13:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.