Split Federated Learning on Micro-controllers: A Keyword Spotting
Showcase
- URL: http://arxiv.org/abs/2210.01961v1
- Date: Tue, 4 Oct 2022 23:42:45 GMT
- Title: Split Federated Learning on Micro-controllers: A Keyword Spotting
Showcase
- Authors: Jingtao Li, Runcong Kuang
- Abstract summary: Federated Learning is proposed as a private learning scheme, using which users can locally train the model without collecting users' raw data to servers.
In this work, we implement a simply SFL framework on the Arduino board and verify its correctness on the Chinese digits audio dataset for keyword spotting application with over 90% accuracy.
On the English digits audio dataset, our SFL implementation achieves 13.89% higher accuracy compared to a state-of-the-art FL implementation.
- Score: 1.4794135558227681
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nowadays, AI companies improve service quality by aggressively collecting
users' data generated by edge devices, which jeopardizes data privacy. To
prevent this, Federated Learning is proposed as a private learning scheme,
using which users can locally train the model without collecting users' raw
data to servers. However, for machine-learning applications on edge devices
that have hard memory constraints, implementing a large model using FL is
infeasible. To meet the memory requirement, a recent collaborative learning
scheme named split federal learning is a potential solution since it keeps a
small model on the device and keeps the rest of the model on the server. In
this work, we implement a simply SFL framework on the Arduino board and verify
its correctness on the Chinese digits audio dataset for keyword spotting
application with over 90% accuracy. Furthermore, on the English digits audio
dataset, our SFL implementation achieves 13.89% higher accuracy compared to a
state-of-the-art FL implementation.
Related papers
- Partial Federated Learning [26.357723187375665]
Federated Learning (FL) is a popular algorithm to train machine learning models on user data constrained to edge devices.
We propose a new algorithm called Partial Federated Learning (PartialFL), where a machine learning model is trained using data where a subset of data modalities can be made available to the server.
arXiv Detail & Related papers (2024-03-03T21:04:36Z) - Communication Efficient ConFederated Learning: An Event-Triggered SAGA
Approach [67.27031215756121]
Federated learning (FL) is a machine learning paradigm that targets model training without gathering the local data over various data sources.
Standard FL, which employs a single server, can only support a limited number of users, leading to degraded learning capability.
In this work, we consider a multi-server FL framework, referred to as emphConfederated Learning (CFL) in order to accommodate a larger number of users.
arXiv Detail & Related papers (2024-02-28T03:27:10Z) - HierSFL: Local Differential Privacy-aided Split Federated Learning in
Mobile Edge Computing [7.180235086275924]
Federated Learning is a promising approach for learning from user data while preserving data privacy.
Split Federated Learning is utilized, where clients upload their intermediate model training outcomes to a cloud server for collaborative server-client model training.
This methodology facilitates resource-constrained clients' participation in model training but also increases the training time and communication overhead.
We propose a novel algorithm, called Hierarchical Split Federated Learning (HierSFL), that amalgamates models at the edge and cloud phases.
arXiv Detail & Related papers (2024-01-16T09:34:10Z) - Semi-Supervised Federated Learning for Keyword Spotting [15.044022869136262]
Keywords Spotting (KWS) is a critical aspect of audio-based applications on mobile devices and virtual assistants.
Recent developments in Federated Learning (FL) have significantly expanded the ability to train machine learning models.
arXiv Detail & Related papers (2023-05-09T00:46:12Z) - Knowledge-Enhanced Semi-Supervised Federated Learning for Aggregating
Heterogeneous Lightweight Clients in IoT [34.128674870180596]
Federated learning (FL) enables multiple clients to train models collaboratively without sharing local data.
We propose pFedKnow, which generates lightweight personalized client models via neural network pruning techniques to reduce communication cost.
Experiment results on both image and text datasets show that the proposed pFedKnow outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2023-03-05T13:19:10Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
In this tutorial, we present a comprehensive review of FL, meta learning, and federated meta learning (FedMeta)
Unlike other tutorial papers, our objective is to explore how FL, meta learning, and FedMeta methodologies can be designed, optimized, and evolved, and their applications over wireless networks.
arXiv Detail & Related papers (2022-10-24T10:59:29Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
Federated Learning (FL) has been proposed to achieve distributed machine learning among networked devices.
The impact of on-device storage on the performance of FL is still not explored.
In this work, we take the first step to consider the online data selection for FL with limited on-device storage.
arXiv Detail & Related papers (2022-09-01T03:27:33Z) - Federated Split GANs [12.007429155505767]
We propose an alternative approach to train ML models in user's devices themselves.
We focus on GANs (generative adversarial networks) and leverage their inherent privacy-preserving attribute.
Our system preserves data privacy, keeps a short training time, and yields same accuracy of model training in unconstrained devices.
arXiv Detail & Related papers (2022-07-04T23:53:47Z) - Federated Learning-based Active Authentication on Mobile Devices [98.23904302910022]
User active authentication on mobile devices aims to learn a model that can correctly recognize the enrolled user based on device sensor information.
We propose a novel user active authentication training, termed as Federated Active Authentication (FAA)
We show that existing FL/SL methods are suboptimal for FAA as they rely on the data to be distributed homogeneously.
arXiv Detail & Related papers (2021-04-14T22:59:08Z) - Wireless Communications for Collaborative Federated Learning [160.82696473996566]
Internet of Things (IoT) devices may not be able to transmit their collected data to a central controller for training machine learning models.
Google's seminal FL algorithm requires all devices to be directly connected with a central controller.
This paper introduces a novel FL framework, called collaborative FL (CFL), which enables edge devices to implement FL with less reliance on a central controller.
arXiv Detail & Related papers (2020-06-03T20:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.