論文の概要: Cloud removal Using Atmosphere Model
- arxiv url: http://arxiv.org/abs/2210.01981v1
- Date: Wed, 5 Oct 2022 01:29:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-06 13:25:52.707233
- Title: Cloud removal Using Atmosphere Model
- Title(参考訳): 大気モデルによる雲除去
- Authors: Yi Guo, Feng Li and Zhuo Wang
- Abstract要約: クラウド除去はリモートセンシングデータ分析において重要なタスクである。
本稿では,低階及びスパースモデルの枠組みにおける任意のシーンの画像の時間的シーケンスに散乱モデルを用いることを提案する。
本研究では,クラウドカバーを定量的に解析できる半現実的シミュレーション手法を開発した。
- 参考スコア(独自算出の注目度): 7.259230333873744
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cloud removal is an essential task in remote sensing data analysis. As the
image sensors are distant from the earth ground, it is likely that part of the
area of interests is covered by cloud. Moreover, the atmosphere in between
creates a constant haze layer upon the acquired images. To recover the ground
image, we propose to use scattering model for temporal sequence of images of
any scene in the framework of low rank and sparse models. We further develop
its variant, which is much faster and yet more accurate. To measure the
performance of different methods {\em objectively}, we develop a semi-realistic
simulation method to produce cloud cover so that various methods can be
quantitatively analysed, which enables detailed study of many aspects of cloud
removal algorithms, including verifying the effectiveness of proposed models in
comparison with the state-of-the-arts, including deep learning models, and
addressing the long standing problem of the determination of regularisation
parameters. The latter is companioned with theoretic analysis on the range of
the sparsity regularisation parameter and verified numerically.
- Abstract(参考訳): クラウド除去はリモートセンシングデータ分析において重要なタスクである。
画像センサーは地上から遠ざかっているため、興味のある領域の一部は雲に覆われている可能性が高い。
さらに、中間の雰囲気は、取得した画像上に一定ヘイズ層を生成する。
地上画像の復元には,低階及びスパースモデルの枠組みにおける任意のシーンの画像の時間的シーケンスに散乱モデルを用いることを提案する。
私たちはさらに、より高速で、より正確である、その変種を開発します。
異なる手法の性能を客観的に測定するために, クラウドカバーを生成するための半現実的シミュレーション手法を開発し, 様々な手法を定量的に解析し, 提案手法の有効性の検証, ディープラーニングモデルを含む最先端モデルとの比較, 正規化パラメータの決定の長期的問題への対処など, クラウド除去アルゴリズムの多くの側面について詳細な研究を可能にした。
後者は、スパーシティ正規化パラメータの範囲に関する理論解析と連動し、数値的に検証される。
関連論文リスト
- MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Gear-NeRF: Free-Viewpoint Rendering and Tracking with Motion-aware Spatio-Temporal Sampling [70.34875558830241]
本研究では,シーンをレンダリングする動的領域の階層化モデリングを可能にする意味的セマンティックギアに基づく,時間的(4D)埋め込みの学習方法を提案する。
同時に、ほぼ無償で、当社のトラッキングアプローチは、既存のNeRFベースのメソッドでまだ達成されていない機能である、自由視点(free-view of interest)を可能にします。
論文 参考訳(メタデータ) (2024-06-06T03:37:39Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - RANRAC: Robust Neural Scene Representations via Random Ray Consensus [12.161889666145127]
RANRAC(RANdom RAy Consensus)は、一貫性のないデータの影響を排除するための効率的な手法である。
我々はRANSACパラダイムのファジィ適応を定式化し、大規模モデルへの適用を可能にした。
その結果, 新規な視点合成のための最先端のロバストな手法と比較して, 顕著な改善が見られた。
論文 参考訳(メタデータ) (2023-12-15T13:33:09Z) - CLiSA: A Hierarchical Hybrid Transformer Model using Orthogonal Cross
Attention for Satellite Image Cloud Segmentation [5.178465447325005]
ディープラーニングアルゴリズムは画像セグメンテーション問題を解決するための有望なアプローチとして登場してきた。
本稿では,Lipschitz Stable Attention NetworkによるCLiSA - Cloudセグメンテーションという,効果的なクラウドマスク生成のためのディープラーニングモデルを提案する。
Landsat-8, Sentinel-2, Cartosat-2sを含む複数の衛星画像データセットの質的および定量的な結果を示す。
論文 参考訳(メタデータ) (2023-11-29T09:31:31Z) - DiffCR: A Fast Conditional Diffusion Framework for Cloud Removal from
Optical Satellite Images [27.02507384522271]
本稿では,光衛星画像の高速クラウド除去に深部畳み込みネットワークを用いた条件付き拡散を利用したDiffCRという新しいフレームワークを提案する。
条件付き特徴抽出のための分離エンコーダを導入し、条件付き入力と合成出力との外観情報の密接な類似性を確保するために、ロバストな色表現を提供する。
論文 参考訳(メタデータ) (2023-08-08T17:34:28Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
この研究は、拡散モデルと物理ベースの露光モデルとをシームレスに統合することで、この問題に対処する。
提案手法は,バニラ拡散モデルと比較して性能が大幅に向上し,推論時間を短縮する。
提案するフレームワークは、実際のペア付きデータセット、SOTAノイズモデル、および異なるバックボーンネットワークの両方で動作する。
論文 参考訳(メタデータ) (2023-07-15T04:48:35Z) - ScatterNeRF: Seeing Through Fog with Physically-Based Inverse Neural
Rendering [83.75284107397003]
本稿では,シーンをレンダリングし,霧のない背景を分解するニューラルネットワークレンダリング手法であるScatterNeRFを紹介する。
本研究では,散乱量とシーンオブジェクトの非絡み合い表現を提案し,物理に着想を得た損失を伴ってシーン再構成を学習する。
マルチビューIn-the-Wildデータをキャプチャして,大規模な霧室内でのキャプチャを制御し,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2023-05-03T13:24:06Z) - UnCRtainTS: Uncertainty Quantification for Cloud Removal in Optical
Satellite Time Series [19.32220113046804]
本稿では,新しいアテンションベースアーキテクチャを組み合わせたマルチテンポラルクラウド除去手法UnCRtainTSを紹介する。
予測された不確かさがいかにして再現品質を正確に制御できるかを示す。
論文 参考訳(メタデータ) (2023-04-11T19:27:18Z) - Non-Homogeneous Haze Removal via Artificial Scene Prior and
Bidimensional Graph Reasoning [52.07698484363237]
本研究では,人工シーンの前置と2次元グラフ推論による不均質なヘイズ除去ネットワーク(nhrn)を提案する。
本手法は,単一画像デハジングタスクとハイザイ画像理解タスクの両方において,最先端アルゴリズムよりも優れた性能を実現する。
論文 参考訳(メタデータ) (2021-04-05T13:04:44Z) - Predicting Landsat Reflectance with Deep Generative Fusion [2.867517731896504]
公共の衛星ミッションは一般に、空間分解能と時間分解能のトレードオフに結びついている。
これにより、植生の監視や人道的行動を支援する能力が損なわれる。
空間的・時間的特性の異なる製品を融合させて高解像度の光学画像を生成するための深部生成モデルの可能性を探る。
論文 参考訳(メタデータ) (2020-11-09T21:06:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。