論文の概要: Patch-GAN Transfer Learning with Reconstructive Models for Cloud Removal
- arxiv url: http://arxiv.org/abs/2501.05265v1
- Date: Thu, 09 Jan 2025 14:19:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 13:59:01.096524
- Title: Patch-GAN Transfer Learning with Reconstructive Models for Cloud Removal
- Title(参考訳): クラウド除去のための再構成モデルを用いたパッチGAN変換学習
- Authors: Wanli Ma, Oktay Karakus, Paul L. Rosin,
- Abstract要約: クラウド除去はリモートセンシング画像解析の強化において重要な役割を担っているが、クラウドオブサークされた領域を正確に再構築することは大きな課題である。
生成モデルの最近の進歩は、現実的な画像の生成をますますアクセスしやすくしている。
本稿では,GAN(Generative Adversarial Network)フレームワーク上に構築された深層移動学習手法を提案し,雲除去における新しいマスク付きオートエンコーダ(MAE)画像再構成モデルの可能性について検討する。
- 参考スコア(独自算出の注目度): 17.690698736544626
- License:
- Abstract: Cloud removal plays a crucial role in enhancing remote sensing image analysis, yet accurately reconstructing cloud-obscured regions remains a significant challenge. Recent advancements in generative models have made the generation of realistic images increasingly accessible, offering new opportunities for this task. Given the conceptual alignment between image generation and cloud removal tasks, generative models present a promising approach for addressing cloud removal in remote sensing. In this work, we propose a deep transfer learning approach built on a generative adversarial network (GAN) framework to explore the potential of the novel masked autoencoder (MAE) image reconstruction model in cloud removal. Due to the complexity of remote sensing imagery, we further propose using a patch-wise discriminator to determine whether each patch of the image is real or not. The proposed reconstructive transfer learning approach demonstrates significant improvements in cloud removal performance compared to other GAN-based methods. Additionally, whilst direct comparisons with some of the state-of-the-art cloud removal techniques are limited due to unclear details regarding their train/test data splits, the proposed model achieves competitive results based on available benchmarks.
- Abstract(参考訳): クラウド除去はリモートセンシング画像解析の強化において重要な役割を担っているが、クラウドオブサークされた領域を正確に再構築することは大きな課題である。
生成モデルの最近の進歩は、現実的な画像の生成をますますアクセスしやすくし、このタスクに新たな機会を与えている。
画像生成とクラウド除去タスクの概念的整合性を考えると、生成モデルはリモートセンシングにおけるクラウド除去に対処するための有望なアプローチを示す。
本研究では,GAN(Generative Adversarial Network)に基づく深層移動学習手法を提案し,雲除去における新しいマスク付きオートエンコーダ(MAE)画像再構成モデルの可能性について検討する。
リモートセンシング画像の複雑さにより、画像の各パッチが本物かどうかを判定するパッチワイド判別器も提案する。
提案手法は,他のGAN方式に比べて雲除去性能が大幅に向上したことを示す。
さらに,現状のクラウド除去技術との直接比較は,それらのトレイン/テストデータ分割に関する詳細が不明確であるため,制限されているが,提案モデルでは,利用可能なベンチマークに基づいて,競合的な結果が得られる。
関連論文リスト
- Removing cloud shadows from ground-based solar imagery [0.33748750222488655]
本稿では,U-Netアーキテクチャに基づくクラウドシャドウの除去手法を提案し,古典的監視と条件付きGANを比較した。
我々は,実画像と合成雲の新しいデータセットを用いて,2つの異なる画像モダリティについて評価を行った。
論文 参考訳(メタデータ) (2024-07-18T10:38:24Z) - Few-shot point cloud reconstruction and denoising via learned Guassian splats renderings and fine-tuned diffusion features [52.62053703535824]
本稿では,少数の画像から点雲を再構成し,そのレンダリングから点雲を識別する手法を提案する。
制約条件下での再構成を改善するため,ハイブリッド表面と外観の相違点のトレーニングを規則化する。
これらの学習したフィルタを使って、3Dの監督なしに来る点雲ノイズを除去する方法を実証する。
論文 参考訳(メタデータ) (2024-04-01T13:38:16Z) - IDF-CR: Iterative Diffusion Process for Divide-and-Conquer Cloud Removal in Remote-sensing Images [55.40601468843028]
雲除去のための反復拡散過程(IDF-CR)を提案する。
IDF-CRは、ピクセル空間と潜在空間に対処する2段階のモデルに分けられる。
潜時空間の段階では、拡散モデルは低品質の雲の除去を高品質のクリーンな出力に変換する。
論文 参考訳(メタデータ) (2024-03-18T15:23:48Z) - Diffusion Enhancement for Cloud Removal in Ultra-Resolution Remote
Sensing Imagery [48.14610248492785]
雲層は、光学リモートセンシング(RS)画像の品質と効果を著しく損なう。
既存のディープラーニング(DL)ベースのクラウド削除(CR)技術は、元の視覚的正当性と画像の詳細なセマンティック内容の正確な再構築に困難を伴う。
この課題に対処するために、データと方法論の面での強化を提案する。
論文 参考訳(メタデータ) (2024-01-25T13:14:17Z) - Diffusion Models for Image Restoration and Enhancement -- A
Comprehensive Survey [96.99328714941657]
本稿では,近年の拡散モデルに基づく画像復元手法について概観する。
我々は、赤外線とブラインド/現実世界の両方で拡散モデルを用いて、革新的なデザインを分類し、強調する。
本稿では,拡散モデルに基づくIRの今後の研究に向けた5つの可能性と課題を提案する。
論文 参考訳(メタデータ) (2023-08-18T08:40:38Z) - UnCRtainTS: Uncertainty Quantification for Cloud Removal in Optical
Satellite Time Series [19.32220113046804]
本稿では,新しいアテンションベースアーキテクチャを組み合わせたマルチテンポラルクラウド除去手法UnCRtainTSを紹介する。
予測された不確かさがいかにして再現品質を正確に制御できるかを示す。
論文 参考訳(メタデータ) (2023-04-11T19:27:18Z) - Cloud removal Using Atmosphere Model [7.259230333873744]
クラウド除去はリモートセンシングデータ分析において重要なタスクである。
本稿では,低階及びスパースモデルの枠組みにおける任意のシーンの画像の時間的シーケンスに散乱モデルを用いることを提案する。
本研究では,クラウドカバーを定量的に解析できる半現実的シミュレーション手法を開発した。
論文 参考訳(メタデータ) (2022-10-05T01:29:19Z) - Cloud removal in remote sensing images using generative adversarial
networks and SAR-to-optical image translation [0.618778092044887]
雲の除去は、幅広い衛星画像の応用により、多くの注目を集めている。
本研究では,2つの生成逆ネットワーク(GAN)を用いてこの問題の解決を試みる。
第1はSAR画像を光学画像に変換し、第2は前GANの変換画像を使用して雲を除去する。
論文 参考訳(メタデータ) (2020-12-22T17:19:14Z) - Two-Stage Single Image Reflection Removal with Reflection-Aware Guidance [78.34235841168031]
シングルイメージリフレクション除去(SIRR)のためのリフレクション・アウェア・ガイダンス(RAGNet)を用いた新しい2段階ネットワークを提案する。
RAGは、(i)観測からの反射の効果を緩和するために、(ii)線形結合仮説から逸脱する効果を緩和するための部分畳み込みにおいてマスクを生成するために用いられる。
5つの一般的なデータセットの実験は、最先端のSIRR法と比較して、RAGNetの量的および質的な優位性を実証している。
論文 参考訳(メタデータ) (2020-12-02T03:14:57Z) - Unsupervised Discovery of Disentangled Manifolds in GANs [74.24771216154105]
解釈可能な生成プロセスは、様々な画像編集アプリケーションに有用である。
本稿では,任意の学習された生成逆数ネットワークが与えられた潜在空間における解釈可能な方向を検出する枠組みを提案する。
論文 参考訳(メタデータ) (2020-11-24T02:18:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。