GT-GAN: General Purpose Time Series Synthesis with Generative
Adversarial Networks
- URL: http://arxiv.org/abs/2210.02040v1
- Date: Wed, 5 Oct 2022 06:18:06 GMT
- Title: GT-GAN: General Purpose Time Series Synthesis with Generative
Adversarial Networks
- Authors: Jinsung Jeon, Jeonghak Kim, Haryong Song, Seunghyeon Cho, Noseong Park
- Abstract summary: We present a general purpose model capable of synthesizing regular and irregular time series data.
We design a generative adversarial network-based method, where many related techniques are carefully integrated into a single framework.
- Score: 11.157586814297138
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Time series synthesis is an important research topic in the field of deep
learning, which can be used for data augmentation. Time series data types can
be broadly classified into regular or irregular. However, there are no existing
generative models that show good performance for both types without any model
changes. Therefore, we present a general purpose model capable of synthesizing
regular and irregular time series data. To our knowledge, we are the first
designing a general purpose time series synthesis model, which is one of the
most challenging settings for time series synthesis. To this end, we design a
generative adversarial network-based method, where many related techniques are
carefully integrated into a single framework, ranging from neural
ordinary/controlled differential equations to continuous time-flow processes.
Our method outperforms all existing methods.
Related papers
- Leveraging Priors via Diffusion Bridge for Time Series Generation [3.2066708654182743]
Time series generation is widely used in real-world applications such as simulation, data augmentation, and hypothesis test techniques.
diffusion models have emerged as the de facto approach for time series generation.
TimeBridge is a framework that enables flexible synthesis by leveraging diffusion bridges to learn the transport between chosen prior and data distributions.
arXiv Detail & Related papers (2024-08-13T06:47:59Z) - Time Series Data Augmentation as an Imbalanced Learning Problem [2.5536554335016417]
We use oversampling strategies to create synthetic time series observations and improve the accuracy of forecasting models.
We carried out experiments using 7 different databases that contain a total of 5502 univariate time series.
We found that the proposed solution outperforms both a global and a local model, thus providing a better trade-off between these two approaches.
arXiv Detail & Related papers (2024-04-29T09:27:15Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
This paper aims at the early development of large time series models (LTSM)
During pre-training, we curate large-scale datasets with up to 1 billion time points.
To meet diverse application needs, we convert forecasting, imputation, and anomaly detection of time series into a unified generative task.
arXiv Detail & Related papers (2024-02-04T06:55:55Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
We introduce Koopman VAE, a new generative framework that is based on a novel design for the model prior.
Inspired by Koopman theory, we represent the latent conditional prior dynamics using a linear map.
KoVAE outperforms state-of-the-art GAN and VAE methods across several challenging synthetic and real-world time series generation benchmarks.
arXiv Detail & Related papers (2023-10-04T07:14:43Z) - Learning Gaussian Mixture Representations for Tensor Time Series
Forecasting [8.31607451942671]
We develop a novel TTS forecasting framework, which seeks to individually model each heterogeneity component implied in the time, the location, and the source variables.
Experiment results on two real-world TTS datasets verify the superiority of our approach compared with the state-of-the-art baselines.
arXiv Detail & Related papers (2023-06-01T06:50:47Z) - TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series [61.436361263605114]
Time series data are often scarce or highly sensitive, which precludes the sharing of data between researchers and industrial organizations.
We introduce Time Series Generative Modeling (TSGM), an open-source framework for the generative modeling of synthetic time series.
arXiv Detail & Related papers (2023-05-19T10:11:21Z) - Group GAN [1.1786249372283564]
We propose a novel framework that takes time series' common origin into account and favors inter-channel relationship preservation.
We demonstrate empirically that our method helps preserve channel correlations and that our synthetic data performs very well downstream tasks with medical and financial data.
arXiv Detail & Related papers (2022-05-27T03:09:55Z) - Towards Generating Real-World Time Series Data [52.51620668470388]
We propose a novel generative framework for time series data generation - RTSGAN.
RTSGAN learns an encoder-decoder module which provides a mapping between a time series instance and a fixed-dimension latent vector.
To generate time series with missing values, we further equip RTSGAN with an observation embedding layer and a decide-and-generate decoder.
arXiv Detail & Related papers (2021-11-16T11:31:37Z) - Learning from Irregularly-Sampled Time Series: A Missing Data
Perspective [18.493394650508044]
Irregularly-sampled time series occur in many domains including healthcare.
We model irregularly-sampled time series data as a sequence of index-value pairs sampled from a continuous but unobserved function.
We propose learning methods for this framework based on variational autoencoders and generative adversarial networks.
arXiv Detail & Related papers (2020-08-17T20:01:55Z) - Variational Hyper RNN for Sequence Modeling [69.0659591456772]
We propose a novel probabilistic sequence model that excels at capturing high variability in time series data.
Our method uses temporal latent variables to capture information about the underlying data pattern.
The efficacy of the proposed method is demonstrated on a range of synthetic and real-world sequential data.
arXiv Detail & Related papers (2020-02-24T19:30:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.