Leveraging Priors via Diffusion Bridge for Time Series Generation
- URL: http://arxiv.org/abs/2408.06672v1
- Date: Tue, 13 Aug 2024 06:47:59 GMT
- Title: Leveraging Priors via Diffusion Bridge for Time Series Generation
- Authors: Jinseong Park, Seungyun Lee, Woojin Jeong, Yujin Choi, Jaewook Lee,
- Abstract summary: Time series generation is widely used in real-world applications such as simulation, data augmentation, and hypothesis test techniques.
diffusion models have emerged as the de facto approach for time series generation.
TimeBridge is a framework that enables flexible synthesis by leveraging diffusion bridges to learn the transport between chosen prior and data distributions.
- Score: 3.2066708654182743
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series generation is widely used in real-world applications such as simulation, data augmentation, and hypothesis test techniques. Recently, diffusion models have emerged as the de facto approach for time series generation, emphasizing diverse synthesis scenarios based on historical or correlated time series data streams. Since time series have unique characteristics, such as fixed time order and data scaling, standard Gaussian prior might be ill-suited for general time series generation. In this paper, we exploit the usage of diverse prior distributions for synthesis. Then, we propose TimeBridge, a framework that enables flexible synthesis by leveraging diffusion bridges to learn the transport between chosen prior and data distributions. Our model covers a wide range of scenarios in time series diffusion models, which leverages (i) data- and time-dependent priors for unconditional synthesis, and (ii) data-scale preserving synthesis with a constraint as a prior for conditional generation. Experimentally, our model achieves state-of-the-art performance in both unconditional and conditional time series generation tasks.
Related papers
- Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
We present Timer-XL, a generative Transformer for unified time series forecasting.
Timer-XL achieves state-of-the-art performance across challenging forecasting benchmarks through a unified approach.
arXiv Detail & Related papers (2024-10-07T07:27:39Z) - TimeAutoDiff: Combining Autoencoder and Diffusion model for time series tabular data synthesizing [13.385264002435145]
In this paper, we leverage the power of latent diffusion models to generate synthetic time series tabular data.
We tackle this problem by combining the ideas of the variational auto-encoder (VAE) and the denoising diffusion probabilistic model (DDPM)
Our model named as textttTimeAutoDiff has several key advantages including (1) Generality: the ability to handle the broad spectrum of time series data from single to multi-sequence datasets.
arXiv Detail & Related papers (2024-06-23T06:32:27Z) - Stochastic Diffusion: A Diffusion Probabilistic Model for Stochastic Time Series Forecasting [8.232475807691255]
We propose a novel Diffusion (StochDiff) model which learns data-driven prior knowledge at each time step.
The learnt prior knowledge helps the model to capture complex temporal dynamics and the inherent uncertainty of the data.
arXiv Detail & Related papers (2024-06-05T00:13:38Z) - Towards Foundation Time Series Model: To Synthesize Or Not To
Synthesize? [2.8707270250981094]
We consider the essential question if it is advantageous to train a foundation model on synthetic data or it is better to utilize only a limited number of real-life examples.
Our experiments are conducted only for regular time series and speak in favor of leveraging solely the real time series.
arXiv Detail & Related papers (2024-03-04T23:03:17Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
Time series pre-training has recently garnered wide attention for its potential to reduce labeling expenses and benefit various downstream tasks.
This paper proposes TimeSiam as a simple but effective self-supervised pre-training framework for Time series based on Siamese networks.
arXiv Detail & Related papers (2024-02-04T13:10:51Z) - Instructed Diffuser with Temporal Condition Guidance for Offline
Reinforcement Learning [71.24316734338501]
We propose an effective temporally-conditional diffusion model coined Temporally-Composable diffuser (TCD)
TCD extracts temporal information from interaction sequences and explicitly guides generation with temporal conditions.
Our method reaches or matches the best performance compared with prior SOTA baselines.
arXiv Detail & Related papers (2023-06-08T02:12:26Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - GT-GAN: General Purpose Time Series Synthesis with Generative
Adversarial Networks [11.157586814297138]
We present a general purpose model capable of synthesizing regular and irregular time series data.
We design a generative adversarial network-based method, where many related techniques are carefully integrated into a single framework.
arXiv Detail & Related papers (2022-10-05T06:18:06Z) - Time Series is a Special Sequence: Forecasting with Sample Convolution
and Interaction [9.449017120452675]
Time series is a special type of sequence data, a set of observations collected at even intervals of time and ordered chronologically.
Existing deep learning techniques use generic sequence models for time series analysis, which ignore some of its unique properties.
We propose a novel neural network architecture and apply it for the time series forecasting problem, wherein we conduct sample convolution and interaction at multiple resolutions for temporal modeling.
arXiv Detail & Related papers (2021-06-17T08:15:04Z) - Synergetic Learning of Heterogeneous Temporal Sequences for
Multi-Horizon Probabilistic Forecasting [48.8617204809538]
We propose Variational Synergetic Multi-Horizon Network (VSMHN), a novel deep conditional generative model.
To learn complex correlations across heterogeneous sequences, a tailored encoder is devised to combine the advances in deep point processes models and variational recurrent neural networks.
Our model can be trained effectively using variational inference and generates predictions with Monte-Carlo simulation.
arXiv Detail & Related papers (2021-01-31T11:00:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.