Evaluation of the Feynman's propagator by means of the quantum
Hamilton-Jacobi equation
- URL: http://arxiv.org/abs/2210.02185v1
- Date: Tue, 4 Oct 2022 09:05:23 GMT
- Title: Evaluation of the Feynman's propagator by means of the quantum
Hamilton-Jacobi equation
- Authors: Mario Fusco Girard
- Abstract summary: The complex phase of the Feynman propagator is a solution of the quantum Hamilton Jacobi equation.
It is shown that the complex phase of the Feynman propagator is a solution of the quantum Hamilton Jacobi equation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is shown that the complex phase of the Feynman propagator is a solution of
the quantum Hamilton Jacobi equation
Related papers
- Integral quantization based on the Heisenberg-Weyl group [39.58317527488534]
We develop a framework of integral quantization applied to the motion of spinless particles in the four-dimensional Minkowski spacetime.
The proposed scheme is based on coherent states generated by the action of the Heisenberg-Weyl group.
A direct application of our model, including a computation of transition amplitudes between states characterized by fixed positions and momenta, is postponed to a forthcoming article.
arXiv Detail & Related papers (2024-10-31T14:36:38Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Coherence generation with Hamiltonians [44.99833362998488]
We explore methods to generate quantum coherence through unitary evolutions.
This quantity is defined as the maximum derivative of coherence that can be achieved by a Hamiltonian.
We identify the quantum states that lead to the largest coherence derivative induced by the Hamiltonian.
arXiv Detail & Related papers (2024-02-27T15:06:40Z) - On the Path Integral Formulation of Wigner-Dunkl Quantum Mechanics [0.0]
Feynman's path integral approach is studied in the framework of the Wigner-Dunkl deformation of quantum mechanics.
We look at the Euclidean time evolution and the related Dunkl process.
arXiv Detail & Related papers (2023-12-20T10:23:34Z) - From each of Feynman's and von Neumann's postulates to the restricted
Feynman path integrals: a mathematical theory of temporally continuous
quantum measurements [0.0]
We prove Mensky's restricted Feynman path integrals emerge out of the Feynman's postulate under a simple approximation.
It is also proved that the restricted Feynman path integrals emerge out of von Neumann's postulate on instantaneous measurements.
Results are applied to formulations of the multi-split experiments, the quantum Zeno and the Aharanov-Bohm effects.
arXiv Detail & Related papers (2023-11-23T12:34:59Z) - The foundations of quantum theory and its possible generalizations [0.0]
Possible generalizations of quantum theory permitting to describe in a unique way the development of the quantum system and the measurement process are discussed.
The application of tachyonic field to overcome divergences arising in this equation is analyzed.
arXiv Detail & Related papers (2021-03-09T11:44:48Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Feynman Functional Integral in the Fokker Theory [62.997667081978825]
equivalence of two formulations of Fokker's quantum theory is proved.
The common basis for the two approaches is the generalized canonical form of Fokker's action.
arXiv Detail & Related papers (2020-11-11T12:10:01Z) - Lagrangian description of Heisenberg and Landau-von Neumann equations of
motion [55.41644538483948]
An explicit Lagrangian description is given for the Heisenberg equation on the algebra of operators of a quantum system, and for the Landau-von Neumann equation on the manifold of quantum states which are isospectral with respect to a fixed reference quantum state.
arXiv Detail & Related papers (2020-05-04T22:46:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.