Entanglement measures for two-particle quantum histories
- URL: http://arxiv.org/abs/2212.07502v1
- Date: Wed, 14 Dec 2022 20:48:36 GMT
- Title: Entanglement measures for two-particle quantum histories
- Authors: Danko Georgiev and Eliahu Cohen
- Abstract summary: We prove that bipartite quantum histories are entangled if and only if the Schmidt rank of this matrix is larger than 1.
We then illustrate the non-classical nature of entangled histories with the use of Hardy's overlapping interferometers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum entanglement is a key resource, which grants quantum systems the
ability to accomplish tasks that are classically impossible. Here, we apply
Feynman's sum-over-histories formalism to interacting bipartite quantum systems
and introduce entanglement measures for bipartite quantum histories. Based on
the Schmidt decomposition of the matrix comprised of the Feynman propagator
complex coefficients, we prove that bipartite quantum histories are entangled
if and only if the Schmidt rank of this matrix is larger than 1. The proposed
approach highlights the utility of using a separable basis for constructing the
bipartite quantum histories and allows for quantification of their entanglement
from the complete set of experimentally measured sequential weak values. We
then illustrate the non-classical nature of entangled histories with the use of
Hardy's overlapping interferometers and explain why local hidden variable
theories are unable to correctly reproduce all observable quantum outcomes. Our
theoretical results elucidate how the composite tensor product structure of
multipartite quantum systems is naturally extended across time and clarify the
difference between quantum histories viewed as projection operators in the
history Hilbert space or viewed as chain operators and propagators in the
standard Hilbert space.
Related papers
- Hyperfine Structure of Quantum Entanglement [8.203995433574182]
We introduce the textithyperfine structure of entanglement, which dissects entanglement contours known as the fine structure into particle-number cumulants.
Our findings suggest experimental accessibility, offering fresh insights into quantum entanglement across physical systems.
arXiv Detail & Related papers (2023-11-03T15:49:56Z) - Quantitative bounds to propagation of quantum correlations in many-body
systems [0.0]
We establish limits to bipartite quantum correlations in many-body systems.
Results confirm that proliferation of classical information in the Universe suppresses quantum correlations.
arXiv Detail & Related papers (2023-10-04T00:24:06Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Genuine multipartite entanglement and quantum coherence in an
electron-positron system: Relativistic covariance [117.44028458220427]
We analyze the behavior of both genuine multipartite entanglement and quantum coherence under Lorentz boosts.
A given combination of these quantum resources is shown to form a Lorentz invariant.
arXiv Detail & Related papers (2021-11-26T17:22:59Z) - Macroscopic randomness for quantum entanglement generation [0.0]
Quantum entanglement between two or more bipartite entities is a core concept in quantum information areas.
This paper presents a pure classical method of on-demand entangled light-pair generation.
arXiv Detail & Related papers (2021-03-04T07:58:49Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - Experimental tests of density matrix's properties-based complementarity
relations [0.0]
Bohr's complementarity principle states that, with a given experimental apparatus configuration, one can observe either the wave-like or the particle-like character of a quantum system, but not both.
Recently, a formalism was developed and quantifiers for the particleness and waveness of a quantum system were derived from the mathematical structure of QM.
In this article, we perform experimental tests of these complementarity relations applied to a particular class of one-qubit quantum states and also for random quantum states of one, two, and three qubits.
arXiv Detail & Related papers (2020-10-29T20:27:49Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Distribution of quantum coherence and quantum phase transition in the
Ising system [2.318473106845779]
Quantifying quantum coherence of a given system plays an important role in quantum information science.
We propose an analysis on the critical behavior of two types Ising systems when distribution of quantum coherence.
arXiv Detail & Related papers (2020-01-29T07:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.