Causally-Aware Spatio-Temporal Multi-Graph Convolution Network for Accurate and Reliable Traffic Prediction
- URL: http://arxiv.org/abs/2408.13293v1
- Date: Fri, 23 Aug 2024 14:35:54 GMT
- Title: Causally-Aware Spatio-Temporal Multi-Graph Convolution Network for Accurate and Reliable Traffic Prediction
- Authors: Pingping Dong, Xiao-Lin Wang, Indranil Bose, Kam K. H. Ng, Xiaoning Zhang, Xiaoge Zhang,
- Abstract summary: This study focuses on an instance of--temporal problem--traffic prediction--to demonstrate an advanced deep learning model for making accurate and reliable forecast.
We propose an end-to-end traffic prediction framework that leverages three primary components to accurate and reliable traffic predictions.
Experimental results on two real-world traffic datasets demonstrate that the method outperforms several state-of-the-art models in prediction accuracy.
- Score: 5.200012764049096
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate and reliable prediction has profound implications to a wide range of applications. In this study, we focus on an instance of spatio-temporal learning problem--traffic prediction--to demonstrate an advanced deep learning model developed for making accurate and reliable forecast. Despite the significant progress in traffic prediction, limited studies have incorporated both explicit and implicit traffic patterns simultaneously to improve prediction performance. Meanwhile, the variability nature of traffic states necessitates quantifying the uncertainty of model predictions in a statistically principled way; however, extant studies offer no provable guarantee on the statistical validity of confidence intervals in reflecting its actual likelihood of containing the ground truth. In this paper, we propose an end-to-end traffic prediction framework that leverages three primary components to generate accurate and reliable traffic predictions: dynamic causal structure learning for discovering implicit traffic patterns from massive traffic data, causally-aware spatio-temporal multi-graph convolution network (CASTMGCN) for learning spatio-temporal dependencies, and conformal prediction for uncertainty quantification. CASTMGCN fuses several graphs that characterize different important aspects of traffic networks and an auxiliary graph that captures the effect of exogenous factors on the road network. On this basis, a conformal prediction approach tailored to spatio-temporal data is further developed for quantifying the uncertainty in node-wise traffic predictions over varying prediction horizons. Experimental results on two real-world traffic datasets demonstrate that the proposed method outperforms several state-of-the-art models in prediction accuracy; moreover, it generates more efficient prediction regions than other methods while strictly satisfying the statistical validity in coverage.
Related papers
- MSCT: Addressing Time-Varying Confounding with Marginal Structural Causal Transformer for Counterfactual Post-Crash Traffic Prediction [24.3907895281179]
This paper presents a novel deep learning model designed for counterfactual post-crash traffic prediction.
The proposed model is treatment-aware, with a specific focus on comprehending and predicting traffic speed under hypothetical crash intervention strategies.
The model is validated using both synthetic and real-world data, demonstrating that MSCT outperforms state-of-the-art models in multi-step-ahead prediction performance.
arXiv Detail & Related papers (2024-07-19T06:42:41Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - A Multi-Channel Spatial-Temporal Transformer Model for Traffic Flow Forecasting [0.0]
We propose a multi-channel spatial-temporal transformer model for traffic flow forecasting.
It improves the accuracy of the prediction by fusing results from different channels of traffic data.
Experimental results on six real-world datasets demonstrate that introducing a multi-channel mechanism into the temporal model enhances performance.
arXiv Detail & Related papers (2024-05-10T06:37:07Z) - Certified Human Trajectory Prediction [66.1736456453465]
Tray prediction plays an essential role in autonomous vehicles.
We propose a certification approach tailored for the task of trajectory prediction.
We address the inherent challenges associated with trajectory prediction, including unbounded outputs, and mutli-modality.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - Uncertainty Quantification for Image-based Traffic Prediction across
Cities [63.136794104678025]
Uncertainty quantification (UQ) methods provide an approach to induce probabilistic reasoning.
We investigate their application to a large-scale image-based traffic dataset spanning multiple cities.
We find that our approach can capture both temporal and spatial effects on traffic behaviour in a representative case study for the city of Moscow.
arXiv Detail & Related papers (2023-08-11T13:35:52Z) - Dynamic Causal Graph Convolutional Network for Traffic Prediction [19.759695727682935]
We propose an approach for predicting traffic that embeds time-varying dynamic network to capture finetemporal patterns of traffic data.
We then use graph convolutional networks to generate traffic forecasts.
Our experimental results on a real traffic dataset demonstrate the superior prediction performance of the proposed method.
arXiv Detail & Related papers (2023-06-12T10:46:31Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
We introduce an interpretable paradigm for trajectory prediction that distributes the uncertainty among semantic concepts.
We validate our approach on real-world autonomous driving data, demonstrating superior performance over state-of-the-art baselines.
arXiv Detail & Related papers (2022-11-16T06:28:20Z) - Practical Adversarial Attacks on Spatiotemporal Traffic Forecasting
Models [9.885060319609831]
Existing methods assume a reliable and unbiased forecasting environment, which is not always available in the wild.
We propose a practical adversarial attack framework, instead of simultaneously attacking all data sources.
We theoretically demonstrate the worst performance bound of adversarial traffic forecasting attacks.
arXiv Detail & Related papers (2022-10-05T02:25:10Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
arterial traffic prediction plays a crucial role in the development of modern intelligent transportation systems.
Many existing studies on arterial traffic prediction only consider temporal measurements of flow and occupancy from loop sensors and neglect the rich spatial relationships between upstream and downstream detectors.
We fill this gap by enhancing a deep learning approach, Diffusion Convolutional Recurrent Neural Network, with spatial information generated from signal timing plans at targeted intersections.
arXiv Detail & Related papers (2020-12-25T01:40:29Z) - AST-GCN: Attribute-Augmented Spatiotemporal Graph Convolutional Network
for Traffic Forecasting [12.284512000306314]
We propose attribute-augmentedtemporal graph convolutional network (AST-GCN) to integrate external factors into traffic forecasting schemes.
Experiments show the effectiveness of considering external information on traffic forecasting tasks when compared to traditional traffic prediction methods.
arXiv Detail & Related papers (2020-11-22T12:49:55Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) is a novel two-stage motion prediction framework.
TPNet first generates a candidate set of future trajectories as hypothesis proposals, then makes the final predictions by classifying and refining the proposals.
Experiments on four large-scale trajectory prediction datasets, show that TPNet achieves the state-of-the-art results both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-04-26T00:01:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.