Non-perturbative constraints from symmetry and chirality on Majorana
zero modes and defect quantum numbers in (2+1)D
- URL: http://arxiv.org/abs/2210.02452v1
- Date: Wed, 5 Oct 2022 18:00:00 GMT
- Title: Non-perturbative constraints from symmetry and chirality on Majorana
zero modes and defect quantum numbers in (2+1)D
- Authors: Naren Manjunath, Vladimir Calvera, and Maissam Barkeshli
- Abstract summary: In (1)D topological phases, unpaired Majorana zero modes (MZMs) can arise only if the internal symmetry group $G_f$ of the ground state splits as $G_f = G_b times mathbbZf$.
In contrast, (2+1)D topological superconductors (TSC) can host unpaired MZMs at defects even when $G_f$ is not of the form $G_b times mathbbZf$.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In (1+1)D topological phases, unpaired Majorana zero modes (MZMs) can arise
only if the internal symmetry group $G_f$ of the ground state splits as $G_f =
G_b \times \mathbb{Z}_2^f$, where $\mathbb{Z}_2^f$ is generated by fermion
parity, $(-1)^F$. In contrast, (2+1)D topological superconductors (TSC) can
host unpaired MZMs at defects even when $G_f$ is not of the form $G_b \times
\mathbb{Z}_2^f$. In this paper we study how $G_f$ together with the chiral
central charge $c_-$ strongly constrain the existence of unpaired MZMs and the
quantum numbers of symmetry defects. Our results utilize a recent algebraic
characterization of (2+1)D invertible fermionic topological states, which
provides a non-perturbative approach based on topological quantum field theory,
beyond free fermions. We study physically relevant groups such as
$\mathrm{U}(1)^f\rtimes H,\mathrm{SU}(2)^f \times H, \mathrm{U}(2)^f\rtimes H
$, generic Abelian groups, as well as more general compact Lie groups,
antiunitary symmetries and crystalline symmetries. We present an algebraic
formula for the fermionic crystalline equivalence principle, which gives an
equivalence between states with crystalline and internal symmetries. In light
of our theory, we discuss several previously proposed realizations of unpaired
MZMs in TSC materials such as Sr$_2$RuO$_4$, transition metal dichalcogenides
and iron superconductors, in which crystalline symmetries are often important;
in some cases we present additional predictions for the properties of these
models.
Related papers
- Exactly solvable models for fermionic symmetry-enriched topological phases and fermionic 't Hooft anomaly [33.49184078479579]
The interplay between symmetry and topological properties plays a very important role in modern physics.
How to realize all these fermionic SET (fSET) phases in lattice models remains to be a difficult open problem.
arXiv Detail & Related papers (2024-10-24T19:52:27Z) - (2+1)D topological phases with RT symmetry: many-body invariant, classification, and higher order edge modes [6.267386954898001]
We consider many-body systems of interacting fermions with fermionic symmetry groups $G_f mathbbZf times mathbbZ$.
We show that (2+1)D invertible fermionic phases with these symmetries have a $mathbbZ times mathbbZ_8$, $mathbbZ_8$, $mathbbZ2 times mathbbZ$, and $mathbbZ2
arXiv Detail & Related papers (2024-03-27T18:00:00Z) - Remarks on effects of projective phase on eigenstate thermalization hypothesis [0.0]
We consider $mathbbZ_NtimesmathbbZ_N$ symmetries with nontrivial projective phases.
We also perform numerical analyses for $ (1+1)$-dimensional spin chains and the $ (2+1)$-dimensional lattice gauge theory.
arXiv Detail & Related papers (2023-10-17T17:36:37Z) - Quantum Current and Holographic Categorical Symmetry [62.07387569558919]
A quantum current is defined as symmetric operators that can transport symmetry charges over an arbitrary long distance.
The condition for quantum currents to be superconducting is also specified, which corresponds to condensation of anyons in one higher dimension.
arXiv Detail & Related papers (2023-05-22T11:00:25Z) - Theory of free fermions under random projective measurements [43.04146484262759]
We develop an analytical approach to the study of one-dimensional free fermions subject to random projective measurements of local site occupation numbers.
We derive a non-linear sigma model (NLSM) as an effective field theory of the problem.
arXiv Detail & Related papers (2023-04-06T15:19:33Z) - Higher-group symmetry in finite gauge theory and stabilizer codes [3.8769921482808116]
A large class of gapped phases of matter can be described by topological finite group gauge theories.
We derive the $d$-group global symmetry and its 't Hooft anomaly for topological finite group gauge theories in $(d+1) space-time dimensions.
We discuss several applications, including the classification of fermionic SPT phases in (3+1)D for general fermionic symmetry groups.
arXiv Detail & Related papers (2022-11-21T19:00:00Z) - Annihilating Entanglement Between Cones [77.34726150561087]
We show that Lorentz cones are the only cones with a symmetric base for which a certain stronger version of the resilience property is satisfied.
Our proof exploits the symmetries of the Lorentz cones and applies two constructions resembling protocols for entanglement distillation.
arXiv Detail & Related papers (2021-10-22T15:02:39Z) - Classification of (2+1)D invertible fermionic topological phases with
symmetry [2.74065703122014]
We classify invertible fermionic topological phases of interacting fermions with symmetry in two spatial dimensions for general fermionic symmetry groups $G_f$.
Our results also generalize and provide a different approach to the recent classification of fermionic symmetry-protected topological phases by Wang and Gu.
arXiv Detail & Related papers (2021-09-22T21:02:07Z) - $\PT$ Symmetry and Renormalisation in Quantum Field Theory [62.997667081978825]
Quantum systems governed by non-Hermitian Hamiltonians with $PT$ symmetry are special in having real energy eigenvalues bounded below and unitary time evolution.
We show how $PT$ symmetry may allow interpretations that evade ghosts and instabilities present in an interpretation of the theory within a Hermitian framework.
arXiv Detail & Related papers (2021-03-27T09:46:36Z) - Fermion and meson mass generation in non-Hermitian Nambu--Jona-Lasinio
models [77.34726150561087]
We investigate the effects of non-Hermiticity on interacting fermionic systems.
We do this by including non-Hermitian bilinear terms into the 3+1 dimensional Nambu--Jona-Lasinio (NJL) model.
arXiv Detail & Related papers (2021-02-02T13:56:11Z) - Non-Hermitian extension of the Nambu--Jona-Lasinio model in 3+1 and 1+1
dimensions [68.8204255655161]
We present a non-Hermitian PT-symmetric extension of the Nambu--Jona-Lasinio model of quantum chromodynamics in 3+1 and 1+1 dimensions.
We find that in both cases, in 3+1 and in 1+1 dimensions, the inclusion of a non-Hermitian bilinear term can contribute to the generated mass.
arXiv Detail & Related papers (2020-04-08T14:29:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.