Exactly solvable models for fermionic symmetry-enriched topological phases and fermionic 't Hooft anomaly
- URL: http://arxiv.org/abs/2410.19126v1
- Date: Thu, 24 Oct 2024 19:52:27 GMT
- Title: Exactly solvable models for fermionic symmetry-enriched topological phases and fermionic 't Hooft anomaly
- Authors: Jing-Ren Zhou, Zheng-Cheng Gu,
- Abstract summary: The interplay between symmetry and topological properties plays a very important role in modern physics.
How to realize all these fermionic SET (fSET) phases in lattice models remains to be a difficult open problem.
- Score: 33.49184078479579
- License:
- Abstract: The interplay between symmetry and topological properties plays a very important role in modern physics. In the past decade, the concept of symmetry-enriched topological (SET) phases was proposed and their classifications have been systematically studied for bosonic systems. Very recently, the concept of SET phases has been generalized into fermionic systems and their corresponding classification schemes are also proposed. Nevertheless, how to realize all these fermionic SET (fSET) phases in lattice models remains to be a difficult open problem. In this paper, we first construct exactly solvable models for non-anomalous non-chiral 2+1D fSET phases, namely, the symmetry-enriched fermionic string-net models, which are described by commuting-projector Hamiltonians whose ground states are the fixed-point wavefunctions of each fSET phase. Mathematically, we provide a partial definition to $G$-graded super fusion category, which is the input data of a symmetry-enriched fermionic string-net model. Next, we construct exactly solvable models for non-chiral 2+1D fSET phases with 't Hooft anomaly, especially the $H^3(G,\mathbb{Z}_2)$ fermionic 't Hooft anomaly which is different from the well known bosonic $H^4(G,U(1)_T)$ anomaly. In our construction, this $H^3(G,\mathbb{Z}_2)$ fermionic 't Hooft anomaly is characterized by a violation of fermion-parity conservation in some of the surface $\mathcal{F}$-moves (a kind of renormalization moves for the ground state wavefunctions of surface SET phases), and also by a new fermionic obstruction $\Theta$ in the surface pentagon equation. We demonstrate this construction in a concrete example that the surface topological order is a $\mathbb{Z}_4$ gauge theory embedded into a fermion system and the total symmetry $G^f=\mathbb{Z}_2^f\times\mathbb{Z}_2\times\mathbb{Z}_4$.
Related papers
- Gapless symmetry-protected topological phases and generalized deconfined critical points from gauging a finite subgroup [0.6675805308519986]
Gauging a finite subgroup of a global symmetry can map conventional phases and phase transitions to unconventional ones.
In this work, we study an emergent $mathbbZ$-gauged system with global $U(1)$.
We also discuss the stability of these phases and the critical points to small perturbations and their potential experimental realizations.
arXiv Detail & Related papers (2024-01-22T05:46:49Z) - $\mathbb{Z}_N$ lattice gauge theories with matter fields [0.0]
We study fermions and bosons in $mathbb Z_N$ lattice gauge theories.
We present analytical arguments for the most important phases and estimates for phase boundaries of the model.
arXiv Detail & Related papers (2023-08-24T21:05:15Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Theory of free fermions under random projective measurements [43.04146484262759]
We develop an analytical approach to the study of one-dimensional free fermions subject to random projective measurements of local site occupation numbers.
We derive a non-linear sigma model (NLSM) as an effective field theory of the problem.
arXiv Detail & Related papers (2023-04-06T15:19:33Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Electric-magnetic duality and $\mathbb{Z}_2$ symmetry enriched Abelian lattice gauge theory [2.206623168926072]
Kitaev's quantum double model is a lattice gauge theoretic realization of Dijkgraaf-Witten topological quantum field theory (TQFT)
Topologically protected ground state space has broad applications for topological quantum computation and topological quantum memory.
arXiv Detail & Related papers (2022-01-28T14:13:38Z) - Towards a complete classification of non-chiral topological phases in 2D fermion systems [29.799668287091883]
We argue that all non-chiral fermionic topological phases in 2+1D are characterized by a set of tensors $(Nij_k,Fij_k,Fijm,alphabeta_kln,chidelta,n_i,d_i)$.
Several examples with q-type anyon excitations are discussed, including the Fermionic topological phase from Tambara-gami category for $mathbbZ_2N$.
arXiv Detail & Related papers (2021-12-12T03:00:54Z) - Gravitational anomaly of 3+1 dimensional Z_2 toric code with fermionic
charges and fermionic loop self-statistics [0.2578242050187029]
We introduce the notion of fermionic loop excitations in $3+1$ dimensional topological phases.
We show that the FcFl phase can only exist at the boundary of a non-trivial 4+1d invertible bosonic, stable without any symmetries.
We also show that the FcFl phase has the same gravitational anomaly as all-fermion quantum electrodynamics.
arXiv Detail & Related papers (2021-10-27T18:00:01Z) - Boundary time crystals in collective $d$-level systems [64.76138964691705]
Boundary time crystals are non-equilibrium phases of matter occurring in quantum systems in contact to an environment.
We study BTC's in collective $d$-level systems, focusing in the cases with $d=2$, $3$ and $4$.
arXiv Detail & Related papers (2021-02-05T19:00:45Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.