論文の概要: Depth Is All You Need for Monocular 3D Detection
- arxiv url: http://arxiv.org/abs/2210.02493v1
- Date: Wed, 5 Oct 2022 18:12:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-07 16:35:07.816742
- Title: Depth Is All You Need for Monocular 3D Detection
- Title(参考訳): モノクローナルな3D検出に必要な深度
- Authors: Dennis Park, Jie Li, Dian Chen, Vitor Guizilini, Adrien Gaidon
- Abstract要約: 教師なしの方法で対象領域に深度表現を合わせることを提案する。
本手法では, トレーニング時間中に利用可能なLiDARやRGBビデオを利用して深度表現を微調整し, 改良された3D検出器を実現する。
- 参考スコア(独自算出の注目度): 29.403235118234747
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A key contributor to recent progress in 3D detection from single images is
monocular depth estimation. Existing methods focus on how to leverage depth
explicitly, by generating pseudo-pointclouds or providing attention cues for
image features. More recent works leverage depth prediction as a pretraining
task and fine-tune the depth representation while training it for 3D detection.
However, the adaptation is insufficient and is limited in scale by manual
labels. In this work, we propose to further align depth representation with the
target domain in unsupervised fashions. Our methods leverage commonly available
LiDAR or RGB videos during training time to fine-tune the depth representation,
which leads to improved 3D detectors. Especially when using RGB videos, we show
that our two-stage training by first generating pseudo-depth labels is critical
because of the inconsistency in loss distribution between the two tasks. With
either type of reference data, our multi-task learning approach improves over
the state of the art on both KITTI and NuScenes, while matching the test-time
complexity of its single task sub-network.
- Abstract(参考訳): 単一画像からの3d検出の最近の進歩の鍵となるのは、単眼深度推定である。
既存の手法では、疑似pointcloudを生成したり、画像機能に注意を向けたりすることで、深度を明示的に活用する方法に焦点を当てている。
近年の研究では、深度予測を事前学習タスクとして活用し、3D検出のためのトレーニング中に深度表現を微調整している。
しかし、適応性は不十分であり、マニュアルラベルによって規模が制限されている。
本研究では,教師なしの方法で対象領域と深度表現をさらに整合させる手法を提案する。
本手法では, トレーニング時間中に利用可能なLiDARやRGBビデオを利用して深度表現を微調整し, 改良された3D検出器を実現する。
特にRGBビデオでは,2つのタスク間の損失分布の不整合のため,まず擬似深度ラベルを生成する2段階トレーニングが重要であることを示す。
いずれの参照データでも、マルチタスク学習アプローチは、kittiとnusceneの両方の最先端技術よりも改善され、単一のタスクサブネットワークのテスト時間複雑性にマッチします。
関連論文リスト
- MonoCD: Monocular 3D Object Detection with Complementary Depths [9.186673054867866]
深度推定は単分子3次元物体検出に不可欠だが挑戦的なサブタスクである。
2つの新しい設計で深度の相補性を高めることを提案する。
KITTIベンチマーク実験により, 余分なデータを導入することなく, 最先端の性能を実現することができた。
論文 参考訳(メタデータ) (2024-04-04T03:30:49Z) - Boosting Monocular 3D Object Detection with Object-Centric Auxiliary
Depth Supervision [13.593246617391266]
本稿では,RGB画像に基づく3D検出器を,深度推定タスクに類似した深度予測損失で共同でトレーニングすることにより,RGB画像に基づく3D検出器の強化手法を提案する。
新たな物体中心深度予測損失は,3次元物体検出において重要な前景物体周辺の深度に焦点をあてる。
我々の深度回帰モデルは、物体の3次元信頼度を表すために、深度の不確かさを予測するためにさらに訓練される。
論文 参考訳(メタデータ) (2022-10-29T11:32:28Z) - Towards Accurate Reconstruction of 3D Scene Shape from A Single
Monocular Image [91.71077190961688]
まず、未知のスケールまで深さを予測し、単一の単眼画像からシフトする2段階のフレームワークを提案する。
次に、3Dポイントの雲のデータを利用して、奥行きの変化とカメラの焦点距離を予測し、3Dシーンの形状を復元します。
我々は9つの未知のデータセットで深度モデルを検証し、ゼロショット評価で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-08-28T16:20:14Z) - MonoDETR: Depth-guided Transformer for Monocular 3D Object Detection [61.89277940084792]
深度誘導型TRansformer(MonoDETR)を用いたモノクロ検出のための最初のDETRフレームワークについて紹介する。
我々は3Dオブジェクト候補を学習可能なクエリとして定式化し、オブジェクトとシーンの深度相互作用を行うための深度誘導デコーダを提案する。
モノクルイメージを入力としてKITTIベンチマークでは、MonoDETRは最先端のパフォーマンスを実現し、追加の深度アノテーションを必要としない。
論文 参考訳(メタデータ) (2022-03-24T19:28:54Z) - VR3Dense: Voxel Representation Learning for 3D Object Detection and
Monocular Dense Depth Reconstruction [0.951828574518325]
3次元物体検出と単眼深層再構成ニューラルネットワークを共同トレーニングする方法を紹介します。
推論中に入力、LiDARポイントクラウド、単一のRGBイメージとして取得し、オブジェクトポーズ予測と密に再構築された深度マップを生成します。
物体検出は教師付き方式で訓練されるが,自己教師型と教師型の両方の損失関数を用いて深度予測ネットワークを訓練する。
論文 参考訳(メタデータ) (2021-04-13T04:25:54Z) - Sparse Auxiliary Networks for Unified Monocular Depth Prediction and
Completion [56.85837052421469]
コスト効率のよいセンサで得られたデータからシーン形状を推定することは、ロボットや自動運転車にとって鍵となる。
本稿では,1枚のRGB画像から,低コストな能動深度センサによるスパース計測により,深度を推定する問題について検討する。
sparse networks (sans) は,深さ予測と完了という2つのタスクをmonodepthネットワークで実行可能にする,新しいモジュールである。
論文 参考訳(メタデータ) (2021-03-30T21:22:26Z) - Learning Joint 2D-3D Representations for Depth Completion [90.62843376586216]
2Dおよび3Dの関節の特徴を抽出することを学ぶシンプルで効果的なニューラルネットワークブロックを設計します。
具体的には、画像画素に2D畳み込みと3D点に連続畳み込みを施した2つのドメイン固有のサブネットワークから構成される。
論文 参考訳(メタデータ) (2020-12-22T22:58:29Z) - Learning to Recover 3D Scene Shape from a Single Image [98.20106822614392]
まず,未知のスケールまで深さを予測し,単一の単眼画像からシフトする2段階フレームワークを提案する。
そして、3dポイントクラウドエンコーダを使って深度シフトと焦点距離を予測し、リアルな3dシーンの形状を復元します。
論文 参考訳(メタデータ) (2020-12-17T02:35:13Z) - Guiding Monocular Depth Estimation Using Depth-Attention Volume [38.92495189498365]
本研究では,特に屋内環境に広く分布する平面構造を優先するための奥行き推定法を提案する。
2つのポピュラーな屋内データセットであるNYU-Depth-v2とScanNetの実験により,本手法が最先端の深度推定結果を実現することを示す。
論文 参考訳(メタデータ) (2020-04-06T15:45:52Z) - Single Image Depth Estimation Trained via Depth from Defocus Cues [105.67073923825842]
単一のRGB画像から深度を推定することはコンピュータビジョンの基本的な課題である。
この作業では、異なる視点ではなく、フォーカスキューからの奥行きに依存しています。
我々は,KITTIとMake3Dデータセットの教師あり手法と同等な結果を提示し,教師なし学習手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-01-14T20:22:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。