論文の概要: Tracking the Evolution of Static Code Warnings: the State-of-the-Art and
a Better Approach
- arxiv url: http://arxiv.org/abs/2210.02651v2
- Date: Tue, 23 Jan 2024 05:07:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-24 20:04:26.134336
- Title: Tracking the Evolution of Static Code Warnings: the State-of-the-Art and
a Better Approach
- Title(参考訳): 静的コード警告の進化を追跡する - 最先端とより良いアプローチ
- Authors: Junjie Li, Jinqiu Yang
- Abstract要約: 静的バグ検出ツールは、悪いプログラミングプラクティスや潜在的な欠陥など、開発者がコード内の問題を検出するのに役立つ。
最近のソフトウェア開発において、コードレビューや継続的統合のような静的バグ検出を統合しようとする動きは、報告された警告を即時に修正する動機付けをより良くしている。
- 参考スコア(独自算出の注目度): 18.350023994564904
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Static bug detection tools help developers detect problems in the code,
including bad programming practices and potential defects. Recent efforts to
integrate static bug detectors in modern software development workflows, such
as in code review and continuous integration, are shown to better motivate
developers to fix the reported warnings on the fly. A proper mechanism to track
the evolution of the reported warnings can better support such integration.
Moreover, tracking the static code warnings will benefit many downstream
software engineering tasks, such as learning the fix patterns for automated
program repair, and learning which warnings are of more interest, so they can
be prioritized automatically. In addition, the utilization of tracking tools
enables developers to concentrate on the most recent and actionable static
warnings rather than being overwhelmed by the thousands of warnings from the
entire project. This, in turn, enhances the utilization of static analysis
tools. Hence, precisely tracking the warnings by static bug detectors is
critical to improving the utilization of static bug detectors further.
- Abstract(参考訳): 静的バグ検出ツールは、悪いプログラミングプラクティスや潜在的な欠陥など、コードの問題を検出するのに役立つ。
コードレビューや継続的インテグレーションなど,最新のソフトウェア開発ワークフローに静的バグ検出機能を統合するという最近の取り組みは,報告された警告をオンザフライで修正するモチベーションを高めている。
報告された警告の進化を追跡する適切なメカニズムは、そのような統合をよりサポートできる。
さらに、静的コード警告の追跡は、自動プログラム修復のための修正パターンの学習や、どの警告がより関心があるかの学習など、多くのダウンストリームのソフトウェアエンジニアリングタスクに役立ち、自動的に優先順位付けできる。
さらに、トラッキングツールの利用により、開発者はプロジェクト全体からの何千もの警告に圧倒されるのではなく、最新のかつ実行可能な静的警告に集中することができる。
これにより、静的解析ツールの利用が強化される。
したがって、静的バグ検出器による警告を正確に追跡することは、静的バグ検出器のさらなる利用を改善するために重要である。
関連論文リスト
- FineWAVE: Fine-Grained Warning Verification of Bugs for Automated Static Analysis Tools [18.927121513404924]
ASAT(Automated Static Analysis Tools)は、バグ検出を支援するために、時間とともに進化してきた。
これまでの研究は、報告された警告を検証するための学習ベースの方法を探究してきた。
我々は,バグに敏感な警告をきめ細かい粒度で検証する学習ベースアプローチであるFineWAVEを提案する。
論文 参考訳(メタデータ) (2024-03-24T06:21:35Z) - Quieting the Static: A Study of Static Analysis Alert Suppressions [7.324969824727792]
我々は、FinderbugsやSpotbugsを使って、設定やソースコードのアノテーションを警告する1,425のオープンソースプロジェクトについて検討する。
ほとんどの警告は抑制されているが、一部の警告は頻繁に抑圧されている。
発見は、静的解析ツールの使用に関するコミュニケーションと教育の改善の必要性を浮き彫りにする。
論文 参考訳(メタデータ) (2023-11-13T17:16:25Z) - ACWRecommender: A Tool for Validating Actionable Warnings with Weak
Supervision [10.040337069728569]
静的解析ツールは潜在的なバグを見つけるために開発者の間で人気を集めているが、その広く採用されていることは、偽のアラーム率の高さによって妨げられている。
従来の研究は、行動警告の概念を提案し、行動警告と誤警報を区別するために機械学習手法を適用した。
本稿では,ACWRecommenderと呼ばれる2段階のフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-18T12:35:28Z) - AiATrack: Attention in Attention for Transformer Visual Tracking [89.94386868729332]
トランスフォーマートラッカーは近年,注目機構が重要な役割を担っている,目覚ましい進歩を遂げている。
我々は,すべての相関ベクトル間のコンセンサスを求めることにより,適切な相関性を高め,誤相関を抑制する注意モジュール(AiA)を提案する。
我々のAiAモジュールは自己認識ブロックとクロスアテンションブロックの両方に容易に適用でき、視覚追跡のための特徴集約と情報伝達を容易にする。
論文 参考訳(メタデータ) (2022-07-20T00:44:03Z) - Learning to Reduce False Positives in Analytic Bug Detectors [12.733531603080674]
偽陽性のバグ警告を識別するためのトランスフォーマーに基づく学習手法を提案する。
我々は,静的解析の精度を17.5%向上させることができることを示した。
論文 参考訳(メタデータ) (2022-03-08T04:26:26Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z) - Tracking the risk of a deployed model and detecting harmful distribution
shifts [105.27463615756733]
実際には、デプロイされたモデルのパフォーマンスが大幅に低下しないという、良心的なシフトを無視することは理にかなっている。
我々は,警告を発射する有効な方法は,(a)良性な警告を無視しながら有害なシフトを検知し,(b)誤報率を増大させることなく,モデル性能の連続的なモニタリングを可能にすることを論じる。
論文 参考訳(メタデータ) (2021-10-12T17:21:41Z) - Sample-Efficient Safety Assurances using Conformal Prediction [57.92013073974406]
早期警戒システムは、安全でない状況が差し迫ったときに警告を提供することができる。
安全性を確実に向上させるためには、これらの警告システムは証明可能な偽陰性率を持つべきである。
本稿では,共形予測と呼ばれる統計的推論手法とロボット・環境力学シミュレータを組み合わせたフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-28T23:00:30Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
この研究は、コードコーパスから安全でないパターンを自動的に学習するためのディープラーニングアプローチを探求する。
コードには解析を伴うグラフ構造が自然に認められるため,プログラムの意味的文脈と構造的規則性の両方を利用する新しいグラフニューラルネットワーク(GNN)を開発する。
論文 参考訳(メタデータ) (2021-09-07T21:24:36Z) - Assessing Validity of Static Analysis Warnings using Ensemble Learning [4.05739885420409]
静的分析(SA)ツールは、コードの潜在的な弱点を特定し、事前に修正するために使われ、コードが開発中である。
これらのルールベースの静的解析ツールは一般的に、実際のものとともに多くの誤った警告を報告します。
機械学習(ML)ベースの学習プロセスを提案し、ソースコード、履歴コミットデータ、および分類器アンサンブルを使用してTrue警告を優先します。
論文 参考訳(メタデータ) (2021-04-21T19:39:20Z) - D2A: A Dataset Built for AI-Based Vulnerability Detection Methods Using
Differential Analysis [55.15995704119158]
静的解析ツールによって報告されたラベル問題に対する差分解析に基づくアプローチであるD2Aを提案する。
D2Aを使用して大きなラベル付きデータセットを生成し、脆弱性識別のためのモデルをトレーニングします。
論文 参考訳(メタデータ) (2021-02-16T07:46:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。