Inference on Causal Effects of Interventions in Time using Gaussian
Processes
- URL: http://arxiv.org/abs/2210.02850v1
- Date: Thu, 6 Oct 2022 12:10:57 GMT
- Title: Inference on Causal Effects of Interventions in Time using Gaussian
Processes
- Authors: Gianluca Giudice, Sara Geneletti and Konstantinos Kalogeropoulos
- Abstract summary: This paper focuses on drawing inference on the causal impact of an intervention at a specific time point.
We operate on the interrupted time series framework and expand on approaches such as the synthetic control.
The developed models possess a high degree of flexibility posing very little limitations on the functional form.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper focuses on drawing inference on the causal impact of an
intervention at a specific time point, as manifested in an outcome variable
over time. We operate on the interrupted time series framework and expand on
approaches such as the synthetic control (Abadie 2003) and Bayesian structural
time series (Brodersen et al 2015), by replacing the underlying dynamic linear
regression model with a non-parametric formulation based on Gaussian Processes.
The developed models possess a high degree of flexibility posing very little
limitations on the functional form and allow to incorporate uncertainty,
stemming from its estimation, under the Bayesian framework. We introduce two
families of non-parametric structural time series models either operating on
the trajectory of the outcome variable alone, or in a multivariate setting
using multiple output Gaussian processes. The paper engages closely with a case
study focusing on the impact of the accelerated UK vaccination schedule, as
contrasted with the rest of Europe, to illustrate the methodology and present
the implementation procedure.
Related papers
- A Practical Approach to Causal Inference over Time [17.660953125689105]
We define causal interventions and their effects over time on discrete-time processes (DSPs)
We show under which conditions the equilibrium states of a DSP, both before and after a causal intervention, can be captured by a structural causal model (SCM)
The resulting causal VAR framework allows us to perform causal inference over time from observational time series data.
arXiv Detail & Related papers (2024-10-14T13:45:20Z) - Sequential Representation Learning via Static-Dynamic Conditional Disentanglement [58.19137637859017]
This paper explores self-supervised disentangled representation learning within sequential data, focusing on separating time-independent and time-varying factors in videos.
We propose a new model that breaks the usual independence assumption between those factors by explicitly accounting for the causal relationship between the static/dynamic variables.
Experiments show that the proposed approach outperforms previous complex state-of-the-art techniques in scenarios where the dynamics of a scene are influenced by its content.
arXiv Detail & Related papers (2024-08-10T17:04:39Z) - Causal Inference from Slowly Varying Nonstationary Processes [2.3072402651280517]
Causal inference from observational data hinges on asymmetry between cause and effect from the data generating mechanisms.
We propose a new class of restricted structural causal models, via a time-varying filter and stationary noise, and exploit the asymmetry from nonstationarity for causal identification.
arXiv Detail & Related papers (2024-05-11T04:15:47Z) - Revisiting the Temporal Modeling in Spatio-Temporal Predictive Learning
under A Unified View [73.73667848619343]
We introduce USTEP (Unified S-TEmporal Predictive learning), an innovative framework that reconciles the recurrent-based and recurrent-free methods by integrating both micro-temporal and macro-temporal scales.
arXiv Detail & Related papers (2023-10-09T16:17:42Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
Estimating counterfactual outcomes over time has the potential to unlock personalized healthcare.
Existing causal inference approaches consider regular, discrete-time intervals between observations and treatment decisions.
We propose a controllable simulation environment based on a model of tumor growth for a range of scenarios.
arXiv Detail & Related papers (2022-06-16T17:15:15Z) - Continuous Latent Process Flows [47.267251969492484]
Partial observations of continuous time-series dynamics at arbitrary time stamps exist in many disciplines. Fitting this type of data using statistical models with continuous dynamics is not only promising at an intuitive level but also has practical benefits.
We tackle these challenges with continuous latent process flows (CLPF), a principled architecture decoding continuous latent processes into continuous observable processes using a time-dependent normalizing flow driven by a differential equation.
Our ablation studies demonstrate the effectiveness of our contributions in various inference tasks on irregular time grids.
arXiv Detail & Related papers (2021-06-29T17:16:04Z) - The temporal overfitting problem with applications in wind power curve
modeling [8.057262184815636]
We propose a new method to tackle the temporal overfitting problem.
Our specific application in this paper targets the power curve modeling in wind energy.
arXiv Detail & Related papers (2020-12-02T17:39:57Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
We propose an artificial neural network with a mechanism to implicitly learn the phase spaces properties.
Our approach is either as competitive as or better than most state-of-the-art strategies.
arXiv Detail & Related papers (2020-06-19T21:04:47Z) - Causal Modeling with Stochastic Confounders [11.881081802491183]
This work extends causal inference with confounders.
We propose a new approach to variational estimation for causal inference based on a representer theorem with a random input space.
arXiv Detail & Related papers (2020-04-24T00:34:44Z) - Estimating the Effects of Continuous-valued Interventions using
Generative Adversarial Networks [103.14809802212535]
We build on the generative adversarial networks (GANs) framework to address the problem of estimating the effect of continuous-valued interventions.
Our model, SCIGAN, is flexible and capable of simultaneously estimating counterfactual outcomes for several different continuous interventions.
To address the challenges presented by shifting to continuous interventions, we propose a novel architecture for our discriminator.
arXiv Detail & Related papers (2020-02-27T18:46:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.